=0+ =0 + v} (7N
On substituting Egs. (1) and (2) into Eq. (7) we get
v =vi[14+e*+2ecosb]. €))

Using Eq. (3) for v, also in Eq. (7) and equating the two
results for v? yields the hodograph in the form

2+ (v, —u,) =1}, (9a)
Since all symbols are components of velocity vectors we
take Eq. (92a) to be the basic form of the velocity hodo-
graph. It shows that the radius of the velocity circle is v,
and that its center is displaced by v, on the y axis. This form
of the hodograph is independent of 4 and it underscores the
natural role that the two invariant velocities play in the
Kepler problem.®

Now, from Ref. 5, v, = k /L = GMm/L in which L is
the magnitude of the orbital angular momentum of Earth,
k = GMm is the force constant where G is the gravitational
constant and M,m are, respectively, the mass of the Sun
and the Earth. Furthermore, from Ref. 5, v, =4 /mL,
where A is the magnitude of the LRL vector.® To conform
to the notation of PDN we call L = J and get

V2 + (v, —A/ml)* = (GmM /J)>. (9b)

From this equation,'® which we call the dynamical form of
the hodograph, Noerdlinger stated that the LRL vector A
“is thus identified as a well known quantity in practical
astronomy.” While this is correct, it appears that the invar-
iant velocities are revealed more directly and simply.

In terms of measurable quantities e, X, and c, since v,
= eKc and v, = K, the hodograph is

vZ + (v, — eKe)® = (Ke)?, (9¢)

which, since it depends on X, we call the stellar aberration
form.

In sum, the aberration constant as defined by Eq. (6) is
simply the ratio of the constant rotating speed v,,, the radi-
us of the hodograph for Earth, to the speed of light; hence,
v, = Kc. The displacement of the center of the hodograph
is the invariant velocity v, = ev, = A /mL = eKc. There-
fore, measurements of stellar aberration, the velocity of
light, and the orbital eccentricity suffice in principle for a
determination of the two invariant velocities. The displace-
ment of the center of the aberration circle noted by Noerd-
linger is seen to be v, in units of the velocity of light.

In this method additional measurements of the angular
momentum L and Earth mass m would in principle be re-

Wave cutoff on a suspended slinky |

quired to define the magnitude of the LRL vector A. The
simple form shown by Eq. (9a) suggests that among the
various velocities associated with the Kepler problem the
two invariant velocities are special, even primal, and that
v, rather than A/mL is fundamental on the basis of simpli-
city. This form should be of interest in a mechanics course.
The form, Eq. (9c¢), for the hodograph suggests a blend of
mechanical and optical parameters that may be of interest
to astronomers.

Finally, the attention focused by Noerdlinger on the
LRL vector whileignoring p,, is not an uncommon practice
of authors in this Journal and in recent mechanics text-
books. It does not detract from the basic insights in Ref. 1
that link mechanical and optical planetary phenomena.
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A long slinky, suspended from above by strings, makes a
beautiful demonstration of wave propagation (see Fig. 1).
If the slinky’s supporting strings are short, then wave cut-

949 Am. J. Phys., Vol. §7, No. 10, October 1989

off results, meaning that waves do not propagate below a
critical frequency. Transverse waves are driven by a heavy
variable-length pendulum attached to one end of the
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Fig. 1. Sketch of the hanging slinky and pendulum driver. The pendulum
motion is normal to the plane of the figure. The length of the support
strings L, remains fixed, while the length of the pendulum L can be varied.

slinky, so that the driving frequency is set by the length L of
the pendulum. For most frequencies, the pendulum has
enough stored energy to drive the slinky for many periods
of oscillation. Waves are excited by simply setting the pen-
dulum in motion. At higher frequencies, it is necessary to
“pump” the pendulum at each cycle with a gentle hand
motion. It is also possible to produce amplitude modula-
tion and wave packets by gradually changing the pendu-
lum’s amplitude.
The horizontal displacement of the slinky y(x,?) obeys

d% 29 %y 2

ar o M
where v, is the asymptotic wave velocity at high frequency.
The term containing w} is due to the supporting strings. A
derivation of Eq. (1) starts with the standard deviation' of
the wave equation for a taut string: A small element of
string of length dx has mass p dx and experiences a restor-
ing force of Td(dy/dx), where T'is the tension and y is the
displacement. If the slinky is supported from above by
strings of length L, then there is an additional restoring
force due to gravity. The transverse component of this
gravitational force on the element is (p dx)gy/L,, pro-
vided y < L,. Equating the sum of the two forces (gravity
plus tension) to the acceleration ma = (p dx)(d 2y/dt?)
yields Eq. (1), where 0} = g/L, and v; = T /p.

1.0 1

Normalized Frequency

Y Y S —— ————————
0 1 2 3 4 5 8

Normalized Wavenumber

The driven slinky produces a standing wave y

= cos(kx)sin(wt), where

o’ =w; + k05 2
is the same dispersion relation obeyed by electromagnetic
radiation in waveguides and optical fibers, and by Lang-
muir waves in a plasma.’>™ '

In order to measure the dispersion relation, we control
the driving frequency & = (g/L)'/? by varying the pendu-
lum length L. Values of wavelength A = 27/k were ob-
tained by photographing the moving slinky and measuring
distances between nodes and antinodes. The opposite end
of the slinky was usually allowed to hang free, allowing
measurements of wavelengths longer than the slinky. Al-
though string at the free end of the slinky did not hang
vertically, the resulting shrinkage of the slinky was accep-
table and can even be used to make a crude estimate of the
slinky’s tension.’

Experimental values of w(k) are shown in Fig. 2 along
with a hyperbola that was fit to the data. The least-squares
fit of the data to Eq. (2) gave w, = 5.47 s~ ' and v, = 69.4
cm/s, with an uncertainty of about 6%. The measured val-
ue of w, differs by 3% from the theoretical value of
w, = (g/L,)'"*. The value of v, obtained from the disper-
sion relation allowed us to calculate the tension in the
slinky. Using T = pv}, and a measured value of p = 2.05 g/
cm, we obtained 7= 9.9 10° dyn ( + 12%).

We also made a direct measurement of the slinky’s ten-
sion by holding a slinky vertically, allowing several loops to
hang below.® We then picked a point on the slinky where
the spacing between loops corresponds to the experimental
conditions (1.45 cm), and determined the mass m’ of the
slinky below that point. Using 7 = m'g, we obtained
9.8 10*dyn ( + 4%), which is almost in exact agreement
with the measurement based on the dispersion relation.

A few hints about constructing the device: The 234-cm-
long slinky consisted of four plastic slinkies’ taped togeth-
er. The strings supported the slinky 35 cm below the hori-
zontal rod, were spaced 7.25 cm apart, and were attached
at every fifth loop of the slinky. The loop spacing was 1.45
cm. The driving pendulum consisted of a heavy twine at-
tached to a sphere of mass 1743 g and radius 3.9 cm. The
driving pendulum was adequate: A larger mass would be
better, but a larger radius would preclude excitation at high
frequencies. ( For example, we could not make L less than 4
cm.) The use of a polaroid camera is not necessary if one is
willing to measure the wavelength directly by hand. It is
recommended that the total length of the slinky be much
larger: A slinky three times as long would extend the full
length of a typical classroom. For careful measurements,
one might consider decreasing the number of slinky loops
per support string from the ratio 5:1 used on our device.

The pendulum driver is strongly recommended. An ear-
lier attempt with a crude motor-driven assembly failed due
to the excitation of higher harmonics. Also, students can
immediately grasp the physics of the device because the
slinky exhibits cutoff when the length of the driving pendu-
lum equals the length of the supporting strings.

Fig. 2. Dispersion relation w(k) of the slinky. The normalized frequency '
is /w, = (L,/L)"% The normalized wavenumber 234/4 is the number
of wavelengths contained in the slinky. The solid line is a hyperbola,
which was fit to Eq. (2), with @, = 5.47s™ ' and v, = 69.4 cm/s giving the
best fit.

'A. P. French, Vibrations and Waves (Norton, New York, 1971), p. 162.
2P, Lorrain and D. Corson, Electromagnetic Fields and Waves (Freeman,
San Francisco, 1970), pp. 489 and 571.
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tension is to measure the exponential decay of the slinky’s transverse
displacement y(x) = y, exp( — xw,/v,) when the pendulum is held mo-
tionless at fixed amplitude. This method yielded 7= 1.5 X 10* dyn. Both
of these estimates of 7 were not very accurate because the slinky shrink-
age and the string spacing were not sufficiently small for the equations to
be valid.
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“Each plastic slinky had 38 loops, weighed 113 g, had a diameter of 8 cm,
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A qualitative demonstration of the conservation of angular momentum
in a system of two noncoaxial rotating disks
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I. INTRODUCTION

The principle of conservation of angular momentum is
the rotational counterpart of the principle of conservation
of linear momentum. According to the principle, the angu-
lar momentum of a rotating system remains constant pro-
vided no external torques act on it. Unlike the conservation
of linear momentum that can be demonstrated readily us-
ing a system of interacting bodies, the conservation of an-
gular momentum is usually demonstrated, as described in
the literature and in most texts, using a system with only
one body having a variable moment of inertia that can be
made to spin about a fixed axis of rotation.' The change in
angular speed w is observed as we vary the moment of iner-
tia 1 of the body, the two physical quantities obey a simple
relationship of indirect proportion, namely, angular mo-
mentum = L = Jo = constant. Since accurate measure-
ments of both angular speed and moment of inertia require
sophisticated equipment and are very time consuming,
most demonstrations of this relation are qualitative in na-
ture. Satisfactory results can often be obtained if damping
is small and the duration of the experiment is reasonably
short.

A demonstration of this principle involving a system of
two interacting bodies with a common axis of rotation was
also described in Meiner’s book.' A ball-bearing nut is al-
lowed to fall down from a freely suspending vertical bolt.
The two bodies turn in opposite directions during the peri-
od of falling. This experiment can be considered as the an-
gular version of the standard mechanics problem—4 ball
rolls down a tilted wedge that is placed on a frictionless hori-
zontal plane...—in which the wedge moves backward as the
ball rolls forward down the incline. Unfortunately, the
ball-bearing nut-and-bolt system used in this experiment is
not only expensive but also too uncommon to be available
in ordinary hardware stores.

In this note, we describe two experiments using a single
device that demonstrate also the conservation of angular
momentum of a system of two interaction bodies. The new
design, however, serves some purposes different from that
of the ball-bearing nut-and-bolt experiment. It has the fol-
lowing interesting special features: (1) The bodies do not
rotate about a common axis; (2) the nature of the coupling
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between the two bodies can be changed depending on the
initial setting; (3) the finished product is large enough to be
clearly visible at the back of the demonstration hall; and
(4) the materials for construction are easily available.

IL. STRUCTURE

The system consists of two standard-sized 30-cm-diam
phonograph turntables (Fig. 1). The first (A) is a high-
quality turntable originally designed to be pivoted by an air
cushion? at the center O. It has been disengaged from its
motor to ensure that the solid friction acting at the shaft is
reduced to a minimum. The second (B) is an arbitrary
turntable mounted on the shaft O’ of a 0- to 12-V dc motor
which by itself is mounted noncoaxially on the top of A. A
6-V battery box that powers the dc motor is also mounted
on the top of A, on the side opposite to the motor, acting
also as a counterweight. The position of the battery box
must be carefully adjusted to restore the balance of the
loaded turntable about its pivot O to prevent side friction
effects at the shaft. The maintenance of a “friction-free”
state of A is crucial for a successful demonstration.

III. THEORY AND OPERATION

The demonstration can be divided into two parts. In the
first experiment, both turntables are initially at rest. When
we switch on the motor, the two turntables will rotate in
opposite directions with B about the moving axis O’ and

Fig. 1. The construction of the conservation of angular momentum appa-
ratus. A—The frictionless turntable; B—The motor-driven turntable; and
C—The battery box (acting also as the counterweight).
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