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A quick but reliable method for determining the width
of a resonance curve from experimental data is described
here. We consider data that fit either a true Lorentzian
curve, or the “near” Lorentzian obtained from a classical
driven harmonic oscillator. 2

Suppose first that we wish to deduce ¥ from experimen-
tal data that is described by a true Lorentzian curve:

1

L(w) @0—o0 ™7’ (1)
where o is the driving frequency and w, is the resonant
frequency. The “damping term” y is both a measure of the
width of the curve, and the degree to which the system is
damped. It is obvious from (1) that 2y equals the FWHM
(full-width-at-half-maximum), defined as the difference
between the two values of o for which L(®) falls to half its
maximum value. The problem is that a simple determina-
tion of FWHM from experimental data does not use all the
available information.

A superior way to find ¥ is to measure the width of the
peak at a number of places. Let Aw be the difference be-
tween two values of @ where L(w) falls below its peak
value by a factor R < 1. It follows from Eq. (1) that

R Aw
Y=\I_R 2’

where R=L(w)/L(w,) with @ being one of the two val-
ues differing by Aw. For example, if R=0.5, then 2y=Aw
=FWHM as expected.

Since Aw and R are easy to measure directly from the
experimental curve, a number of different “measurements”
of ¥ can be made by selecting different values of R. This
generally produces less error and also yields an uncertainty
via the standard deviation of the data. It also serves as a
check that the curve is indeed the Lorentzian given by (1).
As an example, consider the following data taken from
Ref. 2:

(2)

,g R Aw Y Q=wy/2y
7 0766 66.6  60.2 11.6
6 0563 1228 69.7 10.0
5 0391 1593 638 10.9
4 025 2306 66.6 10.5
3 0141 3434 69.5 10.0
2 0063 609.5 787 8.9

Here, A is the amplitude of the oscillation as measured
from the oscnlloscope, whlch displays x(#) =A cos(wt+¢).
As shown in Ref. 1, 4%(w) is approximately a Lorentzian.
At resonance, 4 was 8 divisions on the oscilloscope screen,
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so we take R= (A/8)2 The values of Aw shown above
were measured using a frequency counter, which also mea-
sured the peak frequency to be 222 Hz, or wy=1395 s~
The values of ¥ were calculated using (2) for each value of
R and Aw. The purpose of the experiment was to find
Q=wy/2y, which is also listed.

From the data we see that a systematic error is becoming
significant when R < 0.2. This systematic error is due to at
least three complexities: First, the measured amplitude
contained an unwanted background sound. Second, the
driving force F,, had a slight frequency dependence, which
we are neglecting here. And third, the function to which
we are trying to fit is not really a true Lorentzian, but
instead obeys,

2
0

(0 —wg)* +47%0®

Li(w)= (3)

If we take only the first four data points in order to sup-
press these systematic errors, we obtain y=65+4 s~! and
@=10.8+0.7.

We now consider complications that arise from the fact
the response curve of a driven harmonic oscillator is not
exactly a Lorentzian. Equation (3) becomes a true Lorent-
zian in the limit y<€wy. To correct for this effect, multiply
by the correction term:

v 1
7’=7’o(1—‘27(%20+"')=7’o(1—8—@2+"'), (4)

where 7, is the width obtained using Eq. (2), and ¥ is the
parameter that appears in the ordinary differential equa-
tion for a damped driven harmonic oscillator:

mX=—kx—2myx—+F, cos(wt). (5)

As an example of how to use (4), consider the measure-
ment associated with R=0.063. Using Q=10.8, the cor-
rection term in (4) is seen to be 0.983. This implies that
the experimental value of y=78.7 s~! (for R=0.063)
should be replaced by y=(78.7)(0.983) =77.4 s~!. This
brings ¥ slightly closer to the established value of 65 s/,
but the correction term appears to play an insignificant role
for this experiment. We conclude that the other sources of
systematic error mentioned above are dominant. The cor-
rection indicated by (4) is smaller than 1% for the other
values of R, so that the approximation (2) is clearly ade-
quate for our purposes.

Finally, we outline the lengthy steps leading to (4): Put-
ting the non-Lorentzian response of a harmonic oscillator
into dimensionless variables x=w/w, and B=Y/w,, one
obtains
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for the two frequencies where the response falls to a factor
of R below its peak value. This can be expanded to third
order in the small parameter 8. The expansion is accom-
phshed by expandmg the two nested Taylor expansnons
(14€)"2, there € is either B2 or the term appearing in the
large parenthmls () of (6). Defining Ax=Aw/w,; one

obtains an equation involving Ax that is a third order poly-
nomial in B. Equation (4) follows from an approximate
solution of that polynomial.

Grant Fowles, Analytical Mechanics (CBS College Publishing, New
York, 1986), 4th ed., Sections 3.3 and 3.4.
’G. Vandegrift, “Experimental study of the Helmholtz resonance of a
violin,” Am. J. Phys. 61, 415-421 (1993).

THE LUMINIFEROUS ETHER

We must not listen to any suggestion that we must look upon the luminiferous ether as an
ideal way of putting the thing. A real matter between us and remotest stars I believe there is,
and that light consists of real motions of that matter—motions just such as are descnbed by
Fresnel and Young, motions in the way of transverse vibrations. If I knew what the magnetlc
theory of light is, I might be able to think of it in relation to the fundamental principles of the
wave theory of light. But it seems to me that it is rather a backward step from an absolutely
definite mechanical motion that is put before us by Fresnel and his followers to take up the
so-called electro-magnetic theory of light in the way it has been taken up by several writers of
late. In passing I may say that the one thing about it that seems intelligible to me, I scarcely
think is admissible. What I mean is, that there should be an electric displacement perpendicular
to the line of propagation and a magnetic disturbance perpendicular to both. It seems to me
that when we have an electro-magnetic theory of light, we shall see electric displacement as in
the direction of propagation—simple vibrations as described by Fresnel with lines of vibration
perpendicular to the line of propagation—for the motion actually constituting light. I merely
say that in passing, as perhaps some apology is necessary for my insisting upon the plain matter
of fact dynamics and the true elastic solid as giving what seems to me the only tenable
foundation for the wave theory of light in the present state of our knowledge.

The luminiferous ether we must imagine to be a substance which so far as luminiferous
vibrations are concerned moves as if it were an elastic solid. I do not say it is an elastic solid.
That it moves as if it were an elastic solid in respect to the luminiferous vibrations is the
fundamental assumption of the wave theory of light.

William Thomson (Lord Kelvin), 1884. Kelvin’s Baltimore Lectures and Modern Theoretical Physics, edited by Robert
Kargon and Peter Achinstein (MIT, Cambridge, 1987), p. 12.
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