
LETTERS TO THE EDITOR 

This Letters section is for publishing (a) brief acoustical research or applied acoustical reports, 
(b) comments on articles or letters previously published in this Journal, and (c) a reply by the article 
author to criticism by the Letter author in (b). Extensive reports should be submitted as articles, not in a 
letter series. Letters are peer-reviewed on the same basis as articles, but usually require less review time 
before acceptance. Letters cannot exceed four printed pages (approximately 3000-4000 words) 
including figures, tables, references, and a required abstract of about 100 words. 

A simple derivation of the Green's function for a rectangular 
Helmholtz resonator at low frequency 

Guy Vandegrift 
Department of Physics and Astronomy, University of North Carolina, Greensboro, North Carolina 
2 7412-5001 

(Received 22 January 1993; accepted for publication 30 March 1993) 

The Green's function for a Helmholtz resonator is obtained by considering a closed box 
containing a point source radiator. Using the method of images, a low-frequency approximation 
is derived for the special case of a rectangular box. 

PACS numbers: 43.20.Ks, 43.20.Fn, 43.75.De, 43.88.Ja 

Here is a simple derivation of the Green's function for 
a resonant cavity in the limit of low frequency, apparently 
first derived by Van Bladel. 1 Consider a point radiator lo- 
cated at r', near the center of a closed rectangular box. The 
pressure at point r obeys 

V2P(r) +k2P(r) =Q•3(r-r'), 

where k = ro/c• is the wavenumber and Q is the strength of 
the source. The boundary condition is tht VP. n vanishes 
at the surface of the box, where n is the outward unit 
normal. Using the method of images, the walls of the box 
can be replaced by the image sources obtained by reflecting 
the source point at r' (and all its images) about the walls. 
There is an infinity of such image sources. Assuming that 
pressure oscillates as the real part of e jot, we have the 
exact expression 

P(r)= • ---•-Q • exp(-jklr-ril) 
•' i [r--rit ' 

where r i is at the source or at one of its images. The ap- 
proximation, valid at low frequency, consists of treating 
the source term inside the box separately, and using an 
integral to represent the sum over all the images, 

_-Qfexp(-jklr-r' I ) P(r) • 4•- !• tr-r'l +f r 
where V is the volume of the box, and we note that the 
average density of image sources is V-•. The first term 
represents the contribution of the source at r----r', which is 
generally small, as will be shown later. This justifies our 
treatment of the nearby images as part of the integral be- 

cause these nearby images are all outside the box, and are 
important only if the original source is very close to a wall. 

Two conditions must be met in order to ensure that 

the integral, taken over all space, is a reasonable approxi- 
mation for the sum over images. First, the phase shift be- 
tween neighboring images must be small, allowing us to 
treat image points as a continuous source. This requires 
that kL,• 1, where L is a dimension of the box. Thus, our 
Green's function would not be useful for a resonator that 

resembled a long pipe, which supports standing waves. 
A second condition for allowing us to replace the sum 

by an integral rises from the fact that the integral approx- 
imation works best for the distant images. The relatively 
small number of images close to the box should not con- 
tribute as much to the integral as do the large number of 
distant images. This can be verified by noting that the in- 
tegrand (with d3r=4•rr 2 dr) diverges for large r. Perform- 
ing the integration yields: 

-Q 1 Q 

P(r)= 4rr [r-r'] +•F•, 
where in the first term we have approximated the exponen- 
tial as unity, since klr -- r' I ,• 1. If the source is at a wall 
or corner, there will be a cluster of images at nearly the 
same location, so that one should multiply the first term by 
2, 4, or even 8 (if the source is located at the corner). 

The second term Q/k a V results from the integration 
over all the images. The ratio of this term to the first term 
can •be simplified using the formula k•- - 2R/V for the res- 
onant frequency of a Helmholtz resonator 3 with a small 
circular aperture of radius R: 
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Ir-r' I 4rrl r-r'l 
k2[ z R 

This parameter must be small for typical values of 
I r - r' I, for the following reason. If the parameter were 
not small we would not have been justified in treating the 
nearby images as part of the integral. In other words, if the 
source term is important for moderately large 
I r- r' I, then some of the nearby image terms will also be 
important. We see that the source term is not important 
unless one is within a distance R of the source. Thus our 

approximation is useful for a Helmholtz resonator with an 
aperture size that is much smaller than the dimensions of 
the box: R• V •/3. As with the previous approximation 
(kL• 1 ), this is a low-frequency approximation. 

To obtain the pressure inside an actual Helmholtz res- 
onator, we represent the aperture as a surface acoustical 
charge density, and note that the above expression for P(r) 
is a Green's function. 4 We insert a factor of 2 to include the 
image on the other side of the wall (the aperture is as- 
sumed not to be at a corner): 

P(r)• k•, 4rrlr_r, I cr(r')d2r ', 

where the integral is over the surface of the aperture. By 
analogy with electrostatics, the surface charge cr is propor- 
tional to the normal component of the velocity, 

cr=VP.n= -j•op(v.n), 

where p is the mass density of air. 
In conclusion, we have derived a Green's function that 

describes a Helmholtz resonator with an aperture that is 
much smaller than the di•nensions of the box. We also 

require that the box not be so long and thin that the con- 
dition kL,• 1 is violated. 
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