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The violin supports a Helmholtz resonance, acting like a driven, damped harmonic oscillator.
The amount of damping can be measured from the width of the response curve, and also from
the decay of an undriven oscillator. The phase shift between driver and resonator is also
consistent with theory. Shifts in resonant frequency due to changing the aspect ratio of the f hole
are measured and found to be in qualitative agreement with a convenient formula for the
resonant frequency associated with a long thin aperture.

I. INTRODUCTION

“The suppositions on which we are about to pro-
ceed are not of course strictly correct as applied
to actual resonators such as are used in experi-
ment, but they are near enough to the mark to
afford an instructive view of the subject and in
many cases a foundation for a sufficiently accu-
rate calculation of the pitch.”

From The Theory of Sound by Lord Rayleigh,
first published in 1878

I was looking for an interesting laboratory for a waves
course when I obtained a cheap violin. Its investigation
resulted in an advanced physics lab, a demonstration on
sound and oscilloscopes for junior high school students,
and insights into how the shape of a violin’s f hole deter-
mines the resonant frequency. And, while reading about
Helmbholtz resonators in an old book, I discovered the
above passage.’

Put a coffee cup to your ear, leaving a small gap between
your head and the cup, and listen to the “sound of the
ocean.” You will notice an increase in pitch as you increase
the size of the gap. Equation (3a) below predicts such a
relationship between pitch and gap size, which suggests
that a Helmholtz resonance is being excited by the back-
ground sounds. The original Helmholtz resonator was a
hollow sphere with one or two small cylindrical tubes con-
necting the inside of the sphere to the open air. It was
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investigated by Herman von Helmholtz, and then by Lord
Rayleigh, who calculated the resonant frequency of a large
box with an elliptical aperture. As a Helmholtz resonator
oscillates, air passes through the aperture, causing the in-
ternal pressure to oscillate.

The physics of the violin had been extensively studied in
order to understand how violins work®™ and to create new
designs.>® An isolated violin string cannot radiate much
sound for the same reason a pencil would make a poor fan
on a hot summer day. The surface area is too small to move
an appreciable amount of air. By exciting various normal
modes of the violin, the string is able to set a larger object
in motion, and hence move more air. For notes near what
violinists call “open D” (293 Hz) a mode closely resem-
bling the Helmholtz resonance becomes important.>*7-13
This mode is not a true Helmholtz resonance because some
motion of the walls is involved.*®’ It has been called the
“f-hole resonance,” the “4, resonance,” and the “main air
resonance.” An accomplished violinist, unaware of all this
physics, simply calls it “a sweet note.” Among the well-
known modes, the main air mode has the lowest fre-
quency.’

In this paper, we show how to demonstrate a fundamen-
tal system in physics: a driven, damped harmonic oscilla-
tor.'*1®> The experiment consists of a small speaker placed
over one of the f holes, with a microphone over the other.
Two different methods for measuring the damping term
agree to within the experimental uncertainty of less than
10%. We also investigate a simple formula for a long, thin
aperture that shows how resonant frequency depends more
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Fig. 1. Depiction of signals to the speaker (top) and from the microphone
(bottom) when driving the speaker with “tone bursts,” The undriven
decay of the resonator is the exponentially decaying signal at the tail end
of the pulse (bottom).

strongly on the fhole’s length than on its width. This
might be of interest to designers of stringed instruments.

To measure the damping term by the method of “un-
driven decay,” the speaker is driven by a sine wave gener-
ator that can be pulsed off in order to produce the “tone
bursts” shown in the top part of Fig. 1. As has been dem-
onstrated with closed acoustical cavities,'® the undriven
acoustical signal shows an exponential decay in amplitude,
as seen in the trailing edge at the bottom of Fig. 1. In the
method of “driven response,” the speaker is driven by a
steady sine wave, and the amplitude from the microphone
is measured as a function of driving frequency. The damp-
ing term is obtained from the width of this response curve.
A third, albeit crude, measurement of the damping term is
made from the phase shift between the speaker and the
microphone.

As a supplement to this experiment, it is worthwhile to
invite a violinist to demonstrate the air resonance on a
good violin. Coach the violinist to find the air resonance by
playing a slow glissando on the G string and listening for a
hollow sound. Our violinist had difficulty finding it because
she unconsciously used less bow pressure at resonance. We
covered!” one f hole and asked her to play scales. As ex-
plained below, this shifts the resonant frequency lower by a
factor close to v2. The resonance was immediately discern-
ible at the new frequency, but the violinist rapidly learned
to compensate, and the resonance was again almost hid-
den.

II. CALCULATION OF THE RESONANT
FREQUENCY

We start with a derivation based on simple geometry
that only crudely describes a violin."**'> Tt is reviewed
here because it should be part of the physics lab and be-
cause it will lead to new insights about air flow through the
fholes. An enclosed box of volume ¥ has a long cylindrical
opening of length L and cross-sectional area S, as shown in
Fig. 2. We assume

S1/2<L<VV3</1 (1)

where A=2mc/o is the “free wavelength of sound” and
c=(yP/p)"? is the speed of sound. The system can be
pictured as a mass m and a spring constant k. The mass of
air inside the tube is m= pS L, where p is the mass density
of air. As the Helmholtz resonator oscillates, this air un-
dergoes a very small displacement x(¢) within the tube.
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Fig. 2. A Helmholtz resonator consisting of a box of volume V, and a tube
of length L, and area S.

To obtain the resonator’s spring constant k, we take the
force on the air in the tube to be F = —kx. Defining 8P as
the pressure difference across the tube, we have F=S SP.
Taking the differential of the adiabatic law (PF"=const.)
yields 6P/P= —y(86V/V). Using 8V =Sx, one obtains for
the spring constant of air,"®

2
k=%g-. (2)
The resonant frequency is
, k s
==L’ )
, ca
V=5 (3b)

The approximation (3b) is obtained by first setting
S=mab/4 as the area of an ellipse of length a and width b,
and then using the fact that L is typically close to 1.85 for
a violin. In this approximation the resonant frequency de-
pends only on the length of the aperture.

A better approximation, which is a handy modification
of Lord Rayleigh’s formula, is

5 ca’ T
“0="p" 2Tn (4a/b)’

where a’ is the sum of the lengths of both slits, and a is the
length of one slit. (This assumes that the slits are so far
apart that they do not interact with each other, which is
only an approximation.) Comparing (3a) and (4), we see
that the effective length is evidently

b ) 4q
L,.,2 n ( R ) . (5
For a/b=10, we have L=1.84b and (wb/4L)=0.43,
which is close to the simple factor ; assumed in (3b).

To understand this formula for the effective length, we
use an analogy with the theory of electrostatic fields. 18
The air velocity associated with the resonator is of the form
v(r)cos(wt), where both the curl and divergence of v(r)
nearly vanish. The problem of finding the resonant fre-
quency of an aperture is equivalent to that of finding the
electric conductance of the same aperture if it is cut out of
an insulator and immersed in a conducting fluid. It is also
equivalent to finding the electrostatic capacitance of a con-
ducting sheet with the aperture’s shape. If the slit of the
resonator is long and thin, and wall thickness is neglected,
we can exploit the approximate two-dimensional nature of
the geometry, and use a conformal map'® in the complex
plane to describe the air flow near the middle of the slit, as
shown in Fig. 3.

(4)
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Fig. 3. The flow lines of v for an incompressible fluid flowing through a
infinitely long slit. The width of gap represents the width, b, of the slit.
The slit length, g, is taken to be infinity. The direction of v is parallel to
the flow lines with the magnitude of v being inversely proportional to the
distance between field lines. The contour map is Z=cos(iW).

Lord Rayleigh1 used a superior geometry and considered
an ellipsoid. By taking the limit as one dimension vanishes,
he derived the capacitance of an elliptical sheet of length a
and width b. His result could only be expressed in terms of
an elliptical integral. But, if the slit is long and thin, (a>b),
we can use the Taylor expansion,'®

1 4
E(IHE—-I) €2+ .
(6)

For an ellipse of arbitrary aspect ratio, replace In(4a/b) in
(4) and (5) by the left-hand side of (6) with e=a/b.

Looking at Fig. 3, one might not be surprised that
L = 2b because air speed is largest within a distance b of
the slit. It is easy to image a “tube” of length b extending
on both sides of the aperture. We shall now see that this
should not be taken too literally, especially in the limit
ayb.

Insight into the spatial extent of air flow around the f
hole is obtained by exploiting a fundamental relationship
between resonant frequency and the kinetic and potential
energy.!® To obtain the kinetic energy, we need to integrate
J v? dr over all space. From Fig. 3, vx r~! for r>b, so that
[v? dr diverges as r goes to infinity. The divergence is
removed because the two-dimensional conformal map fails
to describe air flow when r»a. This is analogous to the
electric field caused by a charged wire of length a: the field
falls as 7~ if r<a and as 72 if r>a. The logarithms in (4)
and (5) are essentially truncations of a logarithmic diver-
gence at r~a.

From this analysis, we see that for a long thin aperture
(a»b), the most significant contribution to the kinetic en-
ergy comes from a region extending from r~5 out to r=~a.
The sphere of influence extends outward from the aperture
almost as far as it is long. This can be verified by observing
small changes in the resonance as objects are brought near
an f hole. One must be careful to keep the setup in front of
the f hole the same if one wants repeatable measurements.
Since p dv/dt= —VP, air flow near the f hole is closely

/2 d¢ _1 4
fo \/1—(1—6)2sinT(¢)_"E+
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related to the nonuniformity of Perturbed pressure, dis-
cussed in a recent paper by Shaw.'! The proximity of the f
holes to each other and the back plate ensures that (4) will
not be what Lord Rayleigh calls “strictly correct,” because
of the air flow is modified.

Aside from inadequate compliance with inequality (1),
there are other reasons (4) is not strictly correct. Cremer
calculates an 8% decrease in resonant frequency due to the
finite thickness of the plate, which can be modeled as an
increase in mass m. He also estimates a shift of about 5%
due to the flexibility of the walls, which is also discussed by
Hutchins,'® and by Jansson.® Not only does the bizarre
shape of an fhole defy rigorous calculation, but the volume
of a violin is difficult to measure. Using a ruler, 1 estimated
the volume to be about 2400 cm?, which is 10% larger than
the value used by Cremer, and 30% larger than claimed in
Itokawa. Since resonant frequency is proportional to the
square root of volume, these discrepancies in volume lead
to changes in calculated frequency of about 5% and 14%,
respectively.

We see that a large number of complications make it
very difficult to calculate the resonant frequency to preci-
sion better than 10%. What makes this lab interesting is
not the precision of the measurements, but the number of
ways one can verify the proposition that the air resonance
of a violin resembles a driven, damped harmonic oscillator.

II1. THE DAMPED, DRIVEN OSCILLATOR

The driven, damped harmonic oscillator obeys a well-
known linear differential equation.!*'>?° The dimension-
less “quality factor” Q is

@o

where y is the drag term in Eq. (5) of Ref. 20. Since the
amplitude x(¢) of an undriven oscillator decays as e~ for
large O, we can use (7) to deduce Q from observation of
the undriven decay shown in Fig. 1.

We can also deduce @ from the driven response of the
resonator by varying the driving frequency and measuring
the driven response. If the driving force is Fcos(wt), then
the displacement obeys x(#)=Acos(wt+¢), where
A=A(w) is a function of the driving frequency. As shown
in Ref. 20, 42 is nearly a Lorentzian curve with a peak at
o=, The width of this curve is related to Q by

]
Q~m, (8)

where FWHM (full width at half maximum) is the differ-
ence between the two frequencies for which 42 falls to half
its peak value. From (7) and (8), we see that the FWHM
of A% is twice the damping constant: FWHM =2y.

The phase shift of x(7) with respect to the driving force
¢ is given by .

20y wweQ~!
¢ arctan(wojt?) —arctan(?o—_——wz—) y (9)
so that one could also measure Q by observing how ¢ varies
with . Theoretical and experimental graphs of 4% and dvs
o are shown in Figs. 4 and 5.

Since (7)—(9) represent three independent ways to mea-
sure Q, the hypothesis that the air mode resembles a driven
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Fig. 4. Comparison of theoretical and experimental response curves. Mea-
surements of 42( f) are shown along with theoretical curves for 0=5, 10,
and 15. The curves are each normalized so that they have the same
maximum response. In fact, the maximum response is greater for larger
values of Q. The experimental data was multiplied by (1—-0.05Af) to
account for the frequency dependence response of the speaker. (Here
Af=f—f,). The theoretical curves are shifted slightly to the right in
order to better fit the data.

oscillator can be tested by measuring the three values of Q
and showing them to be equal to within experimental er-
ror.

IV, EQUIPMENT

The equipment necessary for this lab (demonstration) is
(1) A dual trace oscilloscope. (A storage oscilloscope is
preferable.) (2) A microphone with sufficient output to
permit observation on the oscilloscope. (3) A gatable sine
wave generator that can drive a small speaker. (4) A full-
sized violin or a box of comparable dimensions with slits.
(5) A frequency counter (optional but highly recom-
mended).

The sound from the speaker should be clearly audible at
frequencies down to about 150 to 200 Hz. Speakers with
diameters between 1 and 3 in. are readily available, usually
have impedances of 8 ), requiring a 20 V-signal (peak to
peak) in order to produce an acceptable loudness. These
small speakers exhibit an annoying dependence of ampli-
tude with frequency, but the experiment succeeds due to
the sharpness of the resonance. A larger and more power-

® 11804 00—
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e =" .-
a 0 — - T
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driver frequency (Hz)

Fig. 5. Measurements of the phase shift between the driver and resonator
are shown along with theoretical curves for Q=5, 10, and 15. The ob-
served data points were all shifted by a constant phase because the abso-
lute phase shift was not measured here.
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ful speaker is suggested for classroom demonstrations.
l(l()lne can also excite the resonance by singing into an f
ole.)

The gatable sine wave generator needs to produce tone
bursts of about 60 ms duration as shown in the top part of
Fig. 1. We used a Wavetek model 188 sweep/function gen-
erator that cost $980, but any wave generator would work
if you are willing to build a small gating circuit and am-
plifier. The violin need not cost over $50, as it will be
handled and probably mauled slightly. It can be of truly
bad quality.

V. COMPARISON OF DIFFERENT METHODS
FOR MEASURING @

The goal was to achieve the maximum possible agree-
ment between two different methods of measuring Q
(“driven response” and “undriven decay”). For this rea-
son, the setup remained the same for each measurement.
An important cause of discrepancy between the two meth-
ods is that the method of driven response suffers from a
background of signal reaching the microphone directly
from the speaker. In order to reduce this unwanted signal
to a minimum, both the speaker and microphone were as
close as possible to the f holes.

A small (1 in.) speaker was taped over one f hole. A
piece of masking tape was taped around the perimeter of
the speaker, so that the speaker was 1-2 mm from the
violin when placed face down on it. This was to prevent the
speaker from causing the wood to vibrate and unwanted
sound coming directly from the speaker to the microphone.
The remaining part of the f hole with the speaker was also
covered with tape, so that the violin had only one open f
hole. The sides of the microphone were also covered with
tape to make it as directional as possible. The end of the
microphone was placed about one millimeter from the
other f hole.

As a test of whether the sound was successfully blocked
from the speaker to the microphone, a piece of paper was
placed over the remaining f'hole with the speaker set at the
resonant frequency. The amplitude from the microphone
fell by a factor of approximately 14 as the resonant fre-
quency was shifted far from the frequency of the speaker.

The measurement of Q by undamped decay proceeded as
follows: The Wavetek signal generator was set to produce
“tone bursts” with a 50% duty cycle by triggering from a
8 Hz square wave of another generator. Both the signal to
the speaker and the signal from the microphone were si-
multaneously displayed on a dual trace oscilloscope, as
depicted in Fig. 1. When taking measurements, the oscil-
loscope trace was set so that zero signal corresponded to
the bottom of the screen, and the driven amplitude was set
to almost fill the screen of the oscilloscope, which showed
a series of peaks with decreasing amplitude after the gen-
erator was shut off. This allowed for fairly precise measure-
ments of the maximum amplitude directly off the scope.

The logarithm of the amplltude of each peak versus time
is plotted in Fig. 6. Linear regression yields a slope y=62. 9

1. Taking the resonant frequency to be w/2r=223 5",
we obtain Q=11.1+0.8 using (7). The uncertainty is
taken as the standard deviation of values of Q obtained by
comparing each subsequent peak with the first, so that each
peak after the first constitutes a “measurement” of Q.

The amplitude of the speaker (as measured by the mi-
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Fig. 6. The logarithm of the amplitude of the undriven signal versus time.
Each point represents the local maximum (“peak”) in the microphone
signal after the speaker was shut off.

crophone) increases in amplitude by about 10% for each
increase in frequency of 20 Hz. Figure 4 shows a plot of
experimental data points after this effect was removed by
multiplying the observed amplitude by a correction factor.
Also shown are theoretical curves for Q=35, 10, and 15.
Using the method of Ref. 20 to deduce the width of exper-
imental curve, one obtains @=10.8 +0.7. The discrepancy
between both methods of measuring Q is within experimen-
tal error.

V1. PHASE SHIFT OF DRIVEN RESPONSE

The theoretical phase shift between the driver and reso-
nator given is plotted in Fig. 5 for three values of Q. In
principle, this is a third way to measure Q, but one can
only conclude that Q is between 10 and 14, which is con-
sistent with the more precise measurements reported
above.

We now consider the absolute phase shift between the
driver and the resonator. The method of obtaining the
phase shift shown as the data of Fig. 5 only measures the
change in phase as one sweeps through resonance. This is
because the difference in phase between the voltage to the
speaker and the pressure at the f hole is unknown. (This
difference was presumed to be unchanged as one sweeps
through resonance.) In order to measure the absolute
phase shift, the oscilloscope was triggered externally by the
voltage to the speaker and the phase shift in the micro-
phone signal was measured at resonance. Keeping the driv-
ing frequency constant, the f hole was partially covered.
The microphone signal became much weaker and shifted in
phase by 110° as the system left resonance. Comparing this
with the expected phase shift of almost 90°, we conclude
that the discrepancy between theory and experiment is 20/
180, or 11%.

VIL. Q OF AN ISOLATED VIOLIN

Because wall motion is involved, the value of Q probably
depends slightly on how the violin is excited. Qur setup
only permits acoustical excitation of the air resonance. But
we can try to determine Q when both f holes are open and
reasonably isolated from the speaker. The previous setup
was designed to obtain the same values of Q using the
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methods of “undriven decay” and “driven response.” Here
we try to find Q of an isolated violin when the air resonance
is excited acoustically.

A larger (6 cm) speaker was placed 4.5 cm away from
one f hole. This makes the measurement by *driven re-
sponse” impractical because of unwanted sound from the
speaker to the microphone. The only problem with the
method of “undriven decay” is that sound bouncing off the
walls of the room will imitate the decaying Helmholtz os-
cillation. However, the degree to which reverberation is
important can be investigated by covering the f holes,
which destroys the resonance. Under these circumstances,
only the reverberation signal appears, which was 16 times
smaller than the amplitude of the air resonance. This re-
verberation could be reduced to an unobservable value by
exciting the resonance with the speaker on the back surface
of the violin. Measurements of Q yielded 141 with the
speaker in front of the fhole, and 151 with the speaker
behind the violin. Jansson® has measured Q values for a
number of air resonances. For the lowest-order mode of
interest to us, his graph indicates Q=14.5, so that our
measurements are in agreement with that claimed by Jan-
SSon.

A finite value of Q is associated with the energy loss
from the resonator. Cremer’ claims that the most impor-
tant loss mechanisms are radiation of sound waves and
viscous heating of the air as it rushes through the holes.
My tentative calculation yields Q=19, with large uncer-
tainties, so that Q in the range 16-22 could be reasonably
calculated. Taking the observed value of Q to be 14.5, 1
calculate that 47% of the energy is lost as sound radiation,
18% as viscous heating, 7% as flexing of the wood plates,
and 2% from heat loss during the near adiabatic compres-
sion (decompression). This leaves 26% of the observed
energy loss unaccounted for. The fit between theoretical
and experimental values of Q is marginal.

VIIIL. SHIFT IN RESONANT FREQUENCY DUE TO
CHANGES IN f HOLES

The following parameters were taken for the violin: vol-
ume V'=2400 cm?, slit length ¢=8.5 cm, and slit width
b=0.5 cm. Using (4) with ¢=3.4X10* cm/s, we obtain a
theoretical resonant frequency w/2w=196 Hz, which is
11% below the observed 223 Hz. The resonance with both
JSholes open was observed to be 288 Hz. The observed ratio
of 288/223~1.29 is 9% lower than the theoretical ratio of
V2 1.41 for the ratio of resonant frequency with two holes
to that with one hole open.

The parametric dependence of resonant frequency on the
slit dimensions (a,b) was investigated by first taping over
the ends of the fhole until a rectangular aperture remained
of dimensions 5X0.55 cm (wy/2m=185 Hz). With the
hole reduced to a rectangle, its aspect ratio could be varied
by taping over a small sections of it, reducing the size of
either a or b. Figure 7 shows the effect of continuously
making the rectangle shorter and also of making it more
narrow. The two lines show the theoretical curves based on
(4). In both the experimental and theoretical curves, the
variation with the least frequency dependence corresponds
to reducing the slit width. As noted above, we do not ex-
pect exact agreement between theory and experiment due
to a number of complications. However, there is good ex-
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Fig. 7. Variation of resonant frequency with aspect ratio of the aperture.
The starting point was a rectangle of dimensions 5x0.55 c¢m, which
represents the highest frequency and largest size shown in the upper right
corner. The size (either thickness or length) was then reduced by the
factor indicated in the graph, which caused the resonant frequency to
drop. The open triangles represent the shift in frequency squared when
the aperture was made more narrow. The solid squares correspond to
making the aperture shorter. The corresponding theoretical curves are
shown, with the solid and dotted lines representing decreases in width and
length, respectively.

perimental evidence that it is acceptable to use masking
tape to form the apertures, as is shown next.

An experiment was carried out to investigate the differ-
ence between forming the aperture of masking tape and of
a 0.2 cm aluminum plate. A matched pair of aluminum
plates of dimensions 2.5 cm X 5.0 cm was prepared. On one
of the plates, about 40%, was cut away and replaced with
masking tape. Clay was molded around the f hole to form
a jig that could hold either plate, allowing one to inter-
change plates without changing the plate’s position. To
reduce random error associated with imprecise placement
of the plate, the resonant frequency was measured many
times in succession, switching plates after each measure-
ment. The most repeatable method to find the resonant
frequency is to take the average of two frequencies where
the amplitude falls to about 95% of its maximum value.

The experiment was carried out under two conditions.
First the aperture’s length was reduced to about half that
of a normal f hole, while the width was unchanged. The
difference between resonant frequencies with masking tape
and aluminum masks was 0.4+0.2 Hz, or 0.16%. The low
uncertainty was obtained by repeating the measurement 17
times and taking the standard deviation of the mean. The
equality between masking tape and aluminum is so perfect
that I am puzzled. A second experiment to make the ap-
erture more narrow at the same length was less repeatable
due to difficulties in placing the mask over the curved sur-
face of the violin. Here, the change in frequency between
aluminum and tape mask was no more than 0.3%. How-
ever, both experiments indicate that the data of Fig. 7 is
probably reliable, in spite of the fact that masking tape was
used to form the apertures.

IX, CONCLUSION

This laboratory has been incorporated into a project for
physics majors that starts with a brief history of the violin,2
and then proceeds to a guided derivation of (3a) starting
from Fig. 2. The students then obtain the value of “Q”
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using the methods of “undriven decay” and *“driven re-
sponse.”

One merit of this investigation is the way different areas
of physics are brought together. Ideas from mechanics,
thermodynamics, and electrostatics, as taught in the first
two years of college, have been used here. At a slightly
more advanced level, one can follow Cremer® and model
the flexing of the violin’s walls as a system of coupled
harmonic oscillators. For those with advanced electrody-
namics, one can talk about sound radiation, which is the
primary energy loss mechanism in this experiment. Cre-
mer’ gives an introduction to acoustical radiation theory,
which is much simpler than electrodynamic theory, yet
involves the concepts of retarted potentials, energy flux,
and near versus far-field radiation. Here, the acoustic an-
alo‘i for the electromagnetic wave equations is ¢* V2P
=3*P/3¢ for low-amplitude pressure fluctuations.

At the other extreme of student sophistication, I have
shown this Iab to eighth grade students, where the empha-
sis is on how an oscilloscope displays sound vibrations. The
driven Helmholtz resonator is explained to be analogous to
a heavy person on a swing being pushed by a small child.
The students hear the tone bursts from the speaker, and are
then asked to imagine what would happen if the small
child pushed the heavy person on the swing for a minute
and then rested. The appearance of Fig. 1 on the oscillo-
scope makes a nice conclusion.

"Lord Raleigh, The Theory of Sound (Macmillan, London, 1929),
Chap. XVI, Art. 303-307, pp. 170-183.

2C. M. Hutchins, “The physics of violins,” Sci. Am., Nov., 1962. Re-
printed in The Physics of Music (Freeman, San Francisco, 1977). Also
reprinted on pp. 13-24 of Musical Acoustics I. This two volume collec-
tion of articles is edited by C. M. Hutchins, Benchmark Papers in
Acoustics, Dowden, Hutchinson and Ross, Stroudsburg, PA. Musical
Acoustics Iis Vol. 5, 1975 and Musical Acoustics 1I is Vol. 6, 1976.

3L. Cremer, The Physics of the Violin, (MIT Press, Cambridge, MA,
1984), Chaps. 10 and 13.

“N. Fletcher and T. Rossing, The Physics of Musical Instruments,
(Springer-Verlag, New York, 1991), Chap. 10.

3C. M. Hutchins, “Founding a family of fiddles,” Phys. Today 20, 23-28
(February, 1967); reprinted in Musical Acoustics II of Ref. 2, pp. 330-
341.

$C. M. Hutchins and J. Schelling, “A new concert violin,” J. Audio Eng.
Soc. 15(4), 432436 (1967); reprinted in Musical Acoustics II of Ref.
2, pp. 342-343.

K. D. Marshall, “Modal analysis of a violin,” J. Acoust. Soc. Am.
77(2), 695-705 (Feb. 1985). There are five modes with frequency
below the air resonance involve motion of the violin with respect to the
fingerboard, neck, or tailpiece.

8E. Jansson, “On higher air modes in the violin,” Catgut. Acoust. News-
let., 19, 13-15 (1973); reprinted in Musical Acoustics II of Ref. 2, pp.
145-151.

. C. Schelleng, “The violin as a circuit,” J. Acoust. Soc. Am. 35(3),
326-338 (1963); reprinted in Musical Acoustics I of Ref. 2, pp. 87-89.

19¢_ M. Hutchins, “A study of the cavity resonances of a violin and their
effects on its tone and playing qualities,” J. Acoust. Soc. Am. 87(1),
392-397 (Jan. 1990).

g A. G. Shaw, “Cavity resonance in the violin: Network representa-
tion and the effect of damped and undamped ribholes,” Acoust. Soc.
Am. 87(1), 398410 (Jan. 1990).

2H. Itokawa and C. Kumagai, “On the study of violin and its making,”
Mousical Acoustics I of Ref. 2, Vol. 5, pp. 55-85.

BE. Brock Dale, “Demonstration of the effect of altering the cavity
resonance of a violin,” Am. J. Phys. 47, 201 (1979).

G. Vandegrift 420



4G. Fowles, Analytical Mechanics, (CBS College Publishing, New York,
1986), 4th ed. Secs. 3.3 and 3.4.

5A. P. French, Waves and Vibrations, (MIT Press, Cambridge MA,
1979), Chap. 4. WARNING: The decay frequency y used in French is
twice that used here and in Refs. 14 and 20.

16M. Smith, T. Moore, and H. Nicholson, “Wave phenomena in an
acoustical resonator,” Am. J. Phys. 42, 131-136 (1974).

"We used POST-IT PAPER from 3M, not recommended for fear of

harming the finish. Instead, tie a chain of rubber bands around the
body and slip a stiff piece of paper between the fhole and rubber band.

1%Sir H. Lamb, Hydrodynamics (Dover, New York, 1945), Chap. 1V,
Art. 59-66, pp. 62-75.

YH. Dwight, Tables of Integrals and Other Mathematical Data (Mac-
millan, New York, 1961), 4th ed., Entry 777.3.

0, Vandegrift, “Deducing the width of a Lorentzian resonance curve
from experimental data,” Am. J. Phys. 61, 473-474 (1993).

A Galilean experiment to measure a fractal dimension
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A simple and pedagogical kinematic experiment to measure the mass-size fractal dimension D of
crumpled surfaces is presented. The experiment is inspired in the well-known Galilean
experiments with bodies rolling on inclined planes. The experimental results for D agree with

those obtained from static means.

The problem of a hoop, a disk, or a sphere of radius R
rolling from rest down a ramp is discussed in any intro-
ductory phys1cs course.! In this article, we revisit this
problem using a new kind of rolling object, namely the
(non-Euclidean) fractal crumpled surface (CS).2 CS are
obtained from random and 1rrevers1ble compaction of pa-
per sheets or aluminum foils.® These fractal systems
present novel and interesting critical behavior as discussed
recently.

Here, we present an experlmental and pedagoglcal
method to obtain the mass-size fractal dimension® D of CS
using the inclined plane. The conservation of energy for a
ball of mass M rolling from rest down a ramp (Fig. 1) is
expressed as

MgH=Mgh+I0*/2+Mv*/2, (1)

where H is the initial height, and 4, @, and v are, respec-
tively, the height, the angular velocity, and the velocity of
translation of the ball at time 7. In Eq. (1), g is the grav-
itational field, and I is the moment of inertia about any
diameter of the ball. The last quantity is given by®

1=3L rdm, 2)

where R is the radius of the ball. The mass element, dm,
for a D-dimensional ball satlsfymg the mass(M)-size(r)
scaling relatlon M(r)=kr® is dm=M (r+dr) —M (r)
=k(r4+dr)’—krP=kr® (14 Ddr/r)—kr®= Dkr®=dr.
After the substitution of the last expression in Eq. (2) and
integration we get
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I=2DkR?+2/3(D+2). (3)

For a compact sphere of mass M in the physical space we
have D=3, k=M/R> and thenEq (3) reads I=2MR?/5,
as expected. Using Eq. (3) in Eq. (1), and assuming that
v=wR (i.e., the ball rolls down the ramp without slipping)
we obtain after a little rearrangement of the terms:

_(g(H—h) 1\ Dk
S=M( v’ _5)=3(D+2)

Thus, according to the last expression a plot of log .S versus

log R is a straight line whose slope is the dimension D.
The CS in our experiments had a spherical shape and

were obtained from random and irreversible compaction of

RD. (4)

CS

H=16.9cm

Fig. 1. The inclined plane used in the experiments with the crumpled
surfaces (CS). The initial velocity of the CS ball is zero. The velocity » of
the CS at the end of the ramp (at the height / from the horizontal) is
measured with the aid of two detectors connected with a digital clock
(precision of 1X 10~ s). See text, second and third paragraphs.
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