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If the confining potential of electrostatically trapped electrons fluctuates, then the number of
trapped electrons also fluctuates. The linear relationship between potential fluctuations and the
number of trapped electrons is investigated, considering two loss mechanisms for a nearly
collisionless plasma: (1) small-angle collisions (diffusion), and (2) large-angle collisions. This
nearly collisionless model predicts the line tying of interchange modes in a mirror-trapped
plasma is orders of magnitude larger than previously thought for a fusion plasma, yet still not
strong enough to completely line tie an axisymmetric mirror. Also, a nonlinearity in the

response can occur at low amplitude.

I. INTRODUCTION

The following problem arises from the study of inter-
change modes in a magnetic mirror-trapped plasma. A
steady source injects electrons into a potential well. Each
electron is confined for many bounces until it gains enough
energy from collisions to escape. Let the height of the poten-
tial well make small fluctuations. How does the number of
trapped electrons fluctuate?

It has been proposed to suppress interchange modes in
an axisymmetric mirror'~ using the interaction of the plas-
ma with the end wall, which is where the magnetic field lines
terminate. This process, called “line tying,” can be enhanced
using feedback stabilization,® or blanket stabilization,*
which is the stabilization of a hot plasma by an annular blan-
ket of cold, line-tied plasma. It is useful to focus on a single
tube of magnetic flux moving perpendicular to the magnetic
field according to the EXB drift. The fluctuating electro-
static potential remains constant along a magnetic field line
in the presence of interchange modes.””'° The interchange
mode introduces charge into the flux tube via higher-order
drifts such as the curvature drift and ion polarization drift.
Since the interchange mode causes the potential well to fluc-
tuate, a fluctuating current of electrons will leave the flux
tube axially, hitting the end wall. This can influence the dy-
namics of the interchange mode. We shall refer to the rela-
tion between fluctuating potential and electron density as
the response R(w).

Electrons in a magnetic mirror are confined by a combi-
nation of a magnetic mirror and an electrostatic potential
that maintains plasma neutrality by setting the electron loss
rate equal to the ion loss rate. We neglect radial losses, as
well as fluctuations in the loss rate of ions. For a simple
mirror without electron emitting end walls, the electrostatic
potential is believed to decrease monotonically from the end
wall to the plasma.’'"!?

A model to describe the response was proposed by Kun-
kel and Guillory,! and later modified by several au-
thors.>®%1%13 The “Kunkel-Guillory” model assumes that
the electron velocity distribution obeys the Maxwell-Boltz-
mann distribution, even near the loss boundary. This can
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occur if the electron mean-free path is short compared to the
length of the mirror. Kunkel and Guillory proposed the exis-
tence of a cold plasma located near the end wall that might
cause the required collisionality, but it would be necessary to
prevent the electrons in the cold plasma from interacting
with the mirror-trapped plasma.

Volosov and Bekhtenev'#!> proposed a collisionless re-
sponse, valid when the mean-free path for electrons is much
longer than the length of the device. They assumed that elec-
trons are scattered by small-angle Coulomb collisions. The
purpose of this paper is to extend the model by Volosov and
Bekhtenev to include large-angle collisions and to compare
predictions of the various models for different plasma re-
gimes. We also investigate conditions that modify the re-
sponse: A nonlinearity can occur at low amplitude, and the
response can be very sensitive to turbulence near the end
wall.

There are three reasons for looking at the response in the
presence of large-angle collisions. First, we must determine
desired plasma and vacuum parameters for a magnetic mir-
ror at Dickinson College.'® A small plasma device often has
considerable background gas that can cause large-angle
collisions. Second, typically 10% of collisions in a fully ion-
ized plasma are large angle,'”'® so one should verify that the
response due to these large-angle collisions does not over-
whelm the response due to small-angle collisions (this is
verified). Finally, this response could be of interest in other
areas of plasma physics, since electrons are often confined by
potential barriers. The ideas presented here can apply the
electrons in an unmagnetized plasma, to all-electron plas-
mas, and perhaps even to electrons in a semiconductor de-
vice.

In Sec. II, a simple one-dimensional model is presented
that considers both large-angle and small-angle collisions.
Although the assumptions are unrealistic, this model yields
exact solutions. It also points out an important nonlinearity
that occurs at high frequency, and it will help us understand
the full three-dimensional model described in Sec. III. Ap-
plication to interchange modes is discussed in Sec. IV, where
we conclude that line tying in a fusion reactor is orders of
magnitude greater than previously thought.
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Ii. ONE-DIMENSIONAL MODEL

Consider a one-dimensional square well potential with a
depth @, = g, so that any electron with velocity greater

than v, will escape. Electrons are placed in the well with zero.

velocity and gain energy via collisions until v exceeds vy,
whereby the electron exits. Let v, be the rate at which elec-
trons encounter large-angle collisions, and v, be the inverse
time for an electron to random walk via small-angle colli-
sions by an amount 2'/?y, in velocity space. The potential
fluctuates as the real part of ¢ = ¢y = ¢, exp(iwt), where
¢, <€d,. The number of trapped electrons is n,
+ n, exp(iwt), and the response R is defined as

n,/n, = R(w)(&,/d,). n

The time vy, ' for electrons to transit the potential well of
length / is assumed much smaller than any of the other fre-
quencies: vy, = v,/I> (o,v;,v,). In this section we assume
that the bounce-averaged velocity space distribution f(v,?)
obeys a simple diffusion equation with a source S at v =0,
plus two terms representing large angle collisions,

2
S _pdf_
ot n? Va

with the boundary condition that f(v,f) vanish at the “loss
boundary” v?/2 = ¢(t) = ¢, + ¢,. The term containing
n = (f(v)dvin Eq. (2) represents electrons scattered into a
point in velocity space after a large-angle collision elsewhere.
An electron has probability b =uv,/v, <1 of remaining
trapped after each large-angle collision. The diffusion coeffi-
cient D is related to the small-angle scattering frequency v,
as follows. Define

n

vif+ve > + S86(v), (2)

v, =D /v},
ac=v, /v,
b=v,/v,, (3)

Bi= (v, +iw)/v,.

Equation (2) can be separated into equilibrium and
time-varying parts. Equations for both f; and f, ¢’ obey Eq.
(2) except that df;/Jt is absent from the unperturbed equa-
tion, and the equation for f; does not contain the source term
S6(v). The solutions to the unperturbed and perturbed parts
of Eq. (2) are

Fy(x) = % — —g- cosh(a — ax)

1 bsinha + (1 —b)a

sinh(a — ax), (4a)

2 cosha —1
ba* B ( baz) cosh(ﬂx)]
F. = 21— N, 4b
1) [232 3 28>/ sinhpg | (4b)

where F = v, f/ny, N = n/ng, and x = v/v,. Figure 1 shows
fo(v) for different relative strengths @ of small- and large-
angle collisions.

The solution (4b) for the perturbed distribution func-
tion contains a constant n, = {f; dv, which can be found
using the boundary condition that £, + f; must vanish at the
“loss boundary”: f(v, 4+ v,) = 0, where 2v,/vy, = ¢,/ rep-
resents the shift in the loss boundary due to the perturbation.
We approximate fy(v,+v,) as fy(vy) + v, dfo/dv, and
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FIG. 1. Equilibrium distribution functions f;(v) in the one-dimensional
model for b = 0.5. The three curves represent dominance by small-angle
scattering (@ =0.3), transition (@ = 6), and dominance by large-angle
collisions (a = 18). Note that when large-angle collisions dominate
(a> 1), f; peaks sharply at the source (v = 0), falls to a plateau region f*,
then drops sharply to zero at the loss boundary x = v/y, = 1.

fi1(vy +v,) as f,(vy). Using f,(v,) =0 we obtain the
boundary condition

a
fi) = — o, Zol) (5)
av
and the response
R(@) = i[basinh B + (1 — b)a*]/(cosha — 1) )

ba*/B* + (1 —a?/B*H)Bcoth B
Figures 2 and 3 show |R (w)| for real and imaginary w. The
poles of R(w) along the imaginary axis are physical, corre-
sponding to a decay of density to the equilibrium value at
constant potential. These poles are probably unimportant
for line tying because they represent exponentially decaying
modes, while plasma stability issues involve exponentially
growing modes.

The inverse confinement time v, is the rate at which
particles leave the unperturbed well: v .n = dn/dt. To calcu-
late v, we integrate Eq. (2) over the delta function at v = 0.
Or, we can add the loss rate due to collisions to the loss rate
due to diffusion at v = + vy

-25 T
-3 1

"
log{p| 5

FIG. 2. Linear response for p real, where p = iw/v,. This corresponds to an
exponentially growing model. Three values of « are @ = 0.3, 6, and 18. .
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FIG. 3. Comparison of the response for p = iw/v,>0 (exponential
growth), p <0 (exponential decay), and p = iw/v, imaginary (oscillating
wave). Parameters are b = 0.5 and a = 6. The poles and zeros of R occur
for an exponentially decaying signal p = iw/v, <0.

af, (0
v = —20 29 (72)
dv
a
= %) 4 yn, (7b)
dv
Both methods yield the same result:
H _ 2
v, = ba sinha + (1 — b)a* cosh a v.. (8)

cosha — 1

The inverse confineient time v, and response R(w) for var-
ious limits involving v, v, v, , and w are shown in Table I.
The results can be approximately summarized as

R(w)~1, if w<v,, (9a)
R(w) ~\v./iw, if o>v,, (9b)
where one takes the branch of (iw) ~'/* with a positive real
part. The ambiguity when the real part of (iw) ~ /* vanishes

is resolved by putting a branch line from @ = 0 to infinity
along the positive imaginary axis, so that Eq. (9b) does not
describe pure exponentially decaying signals. With this sign
convention, we may interpret # as the number of trapped
electrons, and ¢ as the electrostatic potential of the flux tube,
with the end wall potential held constant.

Equation (9a) is a simplified version of the response
obtained in Ref. 15. However, at very low frequency o <v;
or £v,, Eq. (9b) disagrees with Eq. (18) of Ref. 15. At very
low frequency, the response [Eq. (6)] can be shown to be
equivalent to the obvious equation n, /¢, = 8n, /8¢, , where
the derivative is taken at constant source. The low-frequency
response in Ref. 15 was obtained by taking the derivative of
the axial loss of electrons j = dn/dt: j, /¢, = 8j, /8¢, at con-
stant density, where j, = ion,. We argue that (9b) of this
paper is the correct low-frequency response as follows.
When o < v, it is necessary to assume that a source main-
tains the unperturbed parameters at constant values in order
to postulate linear waves with time dependence exp (iwt), so
that a perturbation in potential leads not to a perturbation in
exiting current (which equals the source at low frequency),
but to a perturbation in the total number of trapped elec-
trons.
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TABLEI. The simple one-dimensional model yields approximations for the
response R(w) and the equilibrium confinement time v ! in various limits
involving the relative magnitudes of large-angle collision frequency v,,
small-angle collision frequency v,, and mode frequency w.

Small-angle Large-angle
collisions collisions
dominate dominate

High-frequency R= v /io R = (b/D)\v, /iw
fluctuations D>V >V, > WDV,
Low-frequency R=1 R=1b/(1-0)
fluctuations v, >od>v, V. >0>V,

V. Vv, >0 VPV >0

Equilibrium inverse v, =2, v.=(1-=>bywv,
confinement time v v, V>V,

It is interesting to compare the collisionless response
with collisional response (proposed by Kunkel and Guil-
lory'), which is valid if the mean-free path for collisions is
shorter than the length of the system:

(10)

The interchange mode typically has a frequency near the ion
transit frequency: @ ~v,;. Since v /v, is the number of
bounces a typical ion makes before escaping the mirror, we
see that the new response is much larger than the Kunkel-
Guillory response whenever ions are confined for many
bounces. Line tying in a nearly collisionless plasma can be
orders of magnitude stronger than the Kunkel-Guillory
model would have predicted.

An important nonlinearity may occur at high frequency
even if ¢, € ¢,. In the limit > v, the perturbed distribution
function ¢, can be obtained from Eq. (4b) in the region near
the loss boundary v = v;:

fiw) = [_L\/Eexp(_\/ﬁﬂ)] m, (D
2y, Y Vs U

where Av = v, — v is the distance in from the unperturbed
loss boundary. Thus, at high frequency, f;(v) is concentrat-
ed very close to the loss boundary, decaying with a skin
depth of v, (v,/®)'”? as one moves away from the loss
boundary. However, in obtaining the linear response, we as-
sumed in Eq. (5) that f,(v) did not vary too rapidly, so that
J1(ve) =f(vy + v,). Consequently, to be in the linear regime
at high frequency we require

&1/¢o &\ v,/w L1 (12)

Further insight into this nonlinearity can be obtained by
considering the opposite limit (v,/w)'? <@, /d, < 1. In this
limit, electrons diffuse much less than a distance
v, = (¢,/2¢,)v, in velocity space during a period 27/w of
the wave. Let the loss cone boundary oscillate as
v(t) = vy + |v,|cos(wr). An approximate zero of f(v) exists
atv = v, — |v,| because electrons do not have time to diffuse
very far between the times when the wave forces f{(v, — |v,])
to be zero. All of the electrons are lost from the well in bursts

Ry (w)~v, /iw.
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that occur when v=uy,|v,|, which happens when
cos(wt) = — 1, or wt = 7, 37, S7,... . In this nonlinear lim-
it, the number of trapped electrons n(¢) as a function of time
resembles a sawtooth, with gradual increases interrupted by
sharp drops whenever cos(wt) = — 1.

A related nonlinearity occurs when large angle colli-
sions dominate over small-angle collisions. Figure 1 shows
that the unperturbed distribution function f,(v) changes
rapidly on a small scale in this limit (a> 1). By the same
reasoning that led to Eq. (12), we conclude that to be in the
linear regime when v,>v,, we require that ¢,/¢,
< (Vs/VL )]/2}

The linear response has an interesting property in the
limit where large-angle scattering dominates (v, >v,): the
response actually depends on small-angle collisions, even
though R (w) does not formally depend on v, in this limit. To
understand this, note that the unperturbed distribution
function near the loss boundary in this limit is

=2
v, Vo/l’
where Av = vy, — v, and f* = bny/2v, is the plateau in the
unperturbed distribution function shown in Fig. 1 for
a = 18. When large-angle collisions dominate, there is a
sudden drop of f,(v) at the loss boundary. The sharpness of
this drop depends on diffusion (via v,). The response R is
proportional to the product of df,,/dv times the skin depth of
/1 depend on v,, but the dependence cancels when we take
the product, so that R(w) is independent of v, in the limit
V> v

The mechanism for the linear response when large-an-
gle collisions dominate is as follows: Large-angle collisions
cause f, to be large near the loss point v,, where f, drops from
a plateau region f* to zero within a short distance deter-
mined by diffusion. As the loss point fluctuates around v,,
the disturbance in f(v) penetrates by a skin depth, also deter-
mined by diffusion. However, the resulting fluctuations in
the trapped number n, + 1, ¢“' have no explicit dependence
on the diffusion coefficient. Thus the effect of large-angle
scattering in this frequency regime is to distort velocity space
so that the response is really due to small-angle collisions.

Jo(v) =f*[1—exp(— (13)

1I. PHYSICALLY REALISTIC MODEL

The ideas developed in Sec. II can be applied to a more
realistic three-dimensional model. The approximate equa-
tions for the response R (w) stated in Eq. (9) are generally
found to be valid, although there are some exceptions. The
frequencies (v,,v,,v.) all retain their essential meaning
(diffusion, large-angle scattering, and confinement, respec-
tively). We define v, as follows. Consider an electron with
velocity v, near the loss boundary. During a small time ¢, it
will diffuse a distance v, (v,7)'/? toward or away from the
loss boundary. Asin Eq. (3), we obtain v, from the diffusion
coefficient at the loss boundary. On the other hand, v, is
determined by a weighted average of the diffusion coefficient
over all of velocity space. In contrast to the one-dimensional
model, we cannot always assume v, ~v, when small-angle
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collisions dominate. The bounce-averaged electron distribu-
tion function obeys

a 1
= =—VDV/f—- VP
o 2 4 s

+ f dv[f(v)g(v,v') —f(Mg(v',v)] + S(v). (14)

The first two terms in Eq. (14) represent the Fokker—Planck
equation,'”® where D is a dyadic VDV
= (d/dv;)D;(d /dv;)f,,and Pis adrag term. The integrals
can represent elastic or inelastic large-angle collisions,
and the source S(v) need not be at zero velocity.

The loss boundary is a two-dimensional surface,
é(v) = ¢y + ¢, exp(iwt), where ¢ (v) is given by a hyperbo-
loid,

$=13[v: — (u—1Du}], (15)
where v, and v, are the components of velocity parallel and
perpendicular to the magnetic field, respectively, and  is the
mirror ratio. When the confining potential ¢, + ¢, exp(iwt)
shifts, the surface of the loss boundary moves in the direction
u=Vf/|Vf|. Assuming spherical symmetry in velocity
space, Eq. (15) becomes ¢ = v°/2, so that u points radially,
and v, represents an energy diffusion frequency in this ap-
proximation.'®

The problem simplifies greatly in the high-frequency
limit @ > v, because the term df/dt on the left in Eq. (14)
becomes very large. The only term on the right that can be
very large is the one containing D, which is large because f,
has a very large gradient. This allows us to simplify the dya-
dic term to the scalar term D d %f,/dv?, where the scalar 2D
equals uDu, and the derivative of f is in the u direction. Asin
Eq. (11), f; is localized to the proximity of the loss surface,
decaying exponentially away from the loss surface with the
skipdepth (D /iw)'/*. The integral for the perturbed density
n, = ff,d>v can be immediately integrated in the direction
perpendicular to the loss boundary, resulting in an integral
over the surface of the loss boundary:

b (., VA
L= d’v D.
" @f Ve P2

This equation is valid at high frequency regardless of
whether large-angle or small-angle collisions dominate.

The inverse lifetime in the case where small-angle scat-
tering dominates can be found by considering the diffusion
of electrons through phase-space DVf,. Upon integration
over the loss boundary, we obtain the inverse confinement
time when diffusion dominates the loss process:

v. = [ a2vg, |D.
"o

(16)

(17)

If we assume a spherically symmetric velocity space
(i.e., electrostatic confinement), we obtain from (16) and
(17)

R(w) = LV /iov,. (18)

This response was obtained by Volosov and Bekhtenev,!®
and can be somewhat smaller than the simple estimate
R~ (v_/iw)'? states in Eq. (9b). [ The assumptions stated
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at the end of this section yield R = 0.34 ~*(v_/iw)"?,
where 4 is the ionic atomic mass. ]

If large-angle collisions dominate the electron loss pro-
cess, there are usually regions on the loss boundary where f;,
drops abruptly to zero from a plateau value f*(v) as ex-
plained in Sec. I and shown in Fig. 1 for a = 18. At high
frequency (w>v.), f; does not penetrate far into the loss
boundary. We can deduce Vf, and f; at the loss boundary as
in the one-dimensional treatment [see Egs. (11) and (13)].
Thus small-angle collisions determine the skin depth of both
Joand £}, but the response is independent of v,, and we obtain
for the limit o> v, v, >v,

¢1 J 2 f *\/Z
n = d’v .
N V|
Itis often possible to estimate £ *(v) to sufficient accura-
cy, use |Vf| ~|v|, and make reasonable estimates of R in this
regime. The scaling f* ~v,/V? over an area V2 on the loss
boundary recovers Eq. (9b). The dependence on b shown in
Table I for the high-frequency, large-angle collision regime
can also be recovered as follows. Suppose electrons are in-
jected anywhere in the trapped region. Let them remain
there until they are scattered with a probability 5 into a re-
gion of volume V2, and a probability 1 — b of escaping. Let

(19)

—
]
1
g (a)
e — ————
_— v,
Vp A
———'——-—E*h_‘
ﬁ
(b)
> Vz

the electrons in the region of volume ¥ have a probability b
of remaining in that same region after each collision, and a
probability 1 — b of escaping. Probability theory says that
S* = bny/V>. If the region of volume V’? intercepts the loss
surface over an area of ¥'?, and we take [Vf| = V, then the
response is exactly the same as shown in Table I for the high-
frequency, large-angle collision regime o> v, >v,.

Equation (19) can be violated if large-angle scattering
cannot bring electrons to the boundary of the loss cone, so
that the plateau f;(v) = f*is not formed. In Fig. 4, a person-
al computer was used to obtain equilibrium distribution
functions, assuming two dimensions, uniform scalar D, and
inelastic scattering. In Fig. 4(a), a plateau does form as
large-angle scattering dominates and particles are injected in
a region of phase space where they can scatter to the loss
boundary. However, when the source is at the origin, large-
angle elastic collisions cannot scatter electrons to the loss
boundary. Thus the plateau is absent in Fig. 4(c), and large-
angle scattering makes no contribution to the response and
confinement time, even though a = 200.

The estimate R ~ (v./iw)'/? can be verified for the four
cases of Fig. 4 by numerically integrating Eq. (16), on the
dark line which served as the loss boundary. The response
was R = C(v,/iw)"? where C = 0.11, 0.29, 0.48, and 0.45

Vp AN
—
(c)
AN VZ
Yp
(d)
vz

FIG. 4. Distribution functions for a uniform diffusion coefficient in two dimensions with elastic scattering. The dark solid line in the lower right corner is the
loss boundary, which corresponds to a mirror ratio of 2. Large-angle scattering should dominate in (a) and (¢) because a = 200. Small-angle scattering
dominatesin (b) and (d) where @ = 0.2. The plateau f{v) = f* formsin (a) as electrons are scattered from the peak to the loss boundary, but the plateau does
not form in (c) because scattering to the loss boundary from v = 0 is impossible.

2418 Phys. Fluids B, Vol. 1, No. 12, December 1989

Guy Vandegrift 2418

Downloaded 19 May 2009 to 130.108.128.31. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



for cases (a) through (d), respectively. The anomalously
low value for (a) may be due to the grid being too large to
calculate the derivative of f;,. Application of Eq. (19) to case
(a) yields C=0.5.

Another exception to the estimate R ~ (v./iw)'/? oc-
curs when electrons have high energy. These electrons are
confined magnetically, so that confinement is not affected by
changes in potential. This is reflected by the large term
|Vf| ~v in the denominator of Egs. (16) and (19).

A more subtle violation of the estimate R ~ (v, /iw) >
could frustrate efforts to line tie interchange modes. Inspec-
tion of Eq. (18) shows that the response depends on the
diffusion coefficient at the loss boundary via v,. If for some
reason D is very large in a small region very close to the loss
boundary, it will have almost no influence on the electron
loss rate v,. (This statement seems to contradict Eq. (17),
but note that Vf; will get small as D gets large.) Electrons
near the loss boundary of velocity space have orbits that take
them close to the end wall, where they might experience
anomalous turbulence that the bulk of the electrons avoid.
Anomalous scattering that is restricted to the extreme edge
of velocity space will affect neither the confinement time nor
the bulk of the distribution function. Optimistic low esti-
mates of v, may be incorrect, even though there is no other
indication the classical Fokker-Planck theory inadequately
describes velocity space.

IV. APPLICATION TO INTERCHANGE MODES

We define a response R (w) due to flute modes that
describes charge that enters a flux tube by crossing magnetic
field lines. We first consider a model for the interchange
mode that is equivalent to the ideal magnetohydrodynamic
(MHD) approximation at low beta (plasma/magnetic pres-
sure ratio). For an axisymmetric plasma with mirror ratio u
between 2 and 9, the response R, due to flute modes is'’

2,2
Rf:%mﬁa (1+£2)’

[0
y=2In(u) [(T, + T.)/2T; vy, (20)

where m is the azimuthal mode number, a is the ion Larmor
radius, 7 is the plasma radius, and v, is the ion transit fre-
quency across the length of the mirror v = v,//. The effect
of “bad” curvature in R, manifests itself in the term contain-
ing the MHD growth rate y. The dispersion relation for an
interchange mode is R + R, = 0, where R is the line-tying
response. Following Ref. 10, we make an analogy to an oscil-
lator or LRC circuit, where “Q” defines the degree to which
the modes at w= +iy of Eq. (20) are damped:
Q=R,(x)/R(y). If @>1, then line tying has little effect
on the curvature driven interchange mode.

If 0«1, then Eq. (20) shows that « must approach zero
in order for the responses due to curvature and line tying to
cancel. The growth rate of the interchange mode is reduced
to approximately 0.5Q% v in the limit Q< 1. This remains
valid if we use a more complicated model” for the inter-
change mode that considers finite ion Larmor radius and a
radial electric field that causes the plasma to rotate with
angular frequency . Inspection of Eq. (4) of Ref. 9 shows
that the response due to curvature diverges at @ = wg. (The

i
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response of Ref. 9 may be normalized to our definition if we
multiply by — ¢y/en,and replacewby — w.) For a rotating
plasma we may Doppler shift the line-tying response to
R(@w — og). Thus in the limit Q< 1, the more complete re-
sponse yields the same growth rate 0.5Q%3y, with the real
part of the frequency being very close to @ . Also, the centri-
fugal force contributes to the growth rate, and line tying
inhibits finite Larmor radius stabilization, as was first noted
in Ref. 19 using the Kunkel-Guillory model.

We can estimate Q by making reasonable assumptions
about the plasma parameters, and by assuming that both v,
and v, can be estimated from the Spitzer collision frequen-
cies.'”'® Since v, describes electrons far above the thermal
energy, we follow Ref. 15 and we use v, =~ (T /¢)**v,,,
where v,, =4X 10~ %7 ~*?1n A is the thermal electron
diffusion time,'® with the density » measured in cm ~3, elec-
tron temperature 7 in eV, and the Coulomb logarithm
In A~15. For the inverse confinement time, we take
Ve =vy; = (m,/m;)"*v,, which is the time for ions to scat-
ter 90 deg. We also set T, =T}, ¢o/T =3, y = 4v, and
mirror length / = 200 cm.

When v, /v, is large, it is convenient to define
K =vy/v. = 5X10°T?n ~ ! as the average number of times
an ion transits the mirror before exiting. If we define p = r/a
as the plasma radius normalized on the Larmor radius, we
obtain a simple expression: Q~20m’4 *K'?p~2 where 4
is the ionic atomic mass, and we require K'> 1 since the elec-
trons and ions have comparable mean-free paths. By con-
trast, if the Kunkel-Guillory model [Eq. (10)] is incorrect-
ly applied to the collisionless regime, we would obtain a
value of Q that is larger by an amount 0.6K ' for hydrogen
(or 2K '? for barium).

Figure 5 shows a map'” of plasma density and tempera-
ture. More line tying (low Q) occurs in the upper left, and

Reactor

large
experiments

log n

log T

FIG. 5. A map of density versus temperature. The diagonal straight lines
are contours of X = 1, 100, 10%, and 10°, where K = v,,/v;, is a measure of
the number of bounces an ion in a mirror of length 200 cm will experience
before being scattered out of the mirror. If the normalized radius r/a = 40,
then the contours of K are contours of Q = 0.02, 0.2, 2, and 20. If 7/a = 4,
then the lines are contours of Q = 2, 20, 200, and 2000. All values are for
lithium, and the values of Q assume a confinement time of v;,.
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less line tying in the lower right part of this map. The diag-
onal straight lines are contours of K = 1, 100, 10*, and 10°
for a mirror of length 200 cm. For example, a fusion plasma
with normalized radius p~40 has K~ 10° bounces, and
therefore Q~ 10 for the m = 1 mode. The target parameter
regime for the experiment at Dickinson College is marked
with a letter “E” in the figure. For a small experiment with
p~4, we would obtain @~ 20 if we really could confine the
ions of K = 100 bounces. In reality, the confinement in the
experiment is not expected to exceed ten bounces due to
collisions with neutral particles, so that we are striving to
achieve @~ 3. Note that the Kunkel-Guillory model yields
Q~ 3000 for a fusion reactor, and Q~1 for the Dickinson
experiment.

The horizontal dotted line in Fig. 5 represents an ion
plasma frequency 47ne*/m, that is ten times the ion cyclo-
tron frequency eB /m,c* at B = 1 kG, for a lithium plasma.
The plasma density must exceed this limit in order to obtain
quasineutrality for the flute mode,”® which means that the
perturbed ion and electron densities are equal, and requires
that the ion plasma frequency 41rne’/m; far exceed the ion
cyclotron frequency eB /m,c.

Although line tying has been investigated?® with a hot,
dense plasma on Phaedrus®’ at the University of Wisconsin,
the relevant equations for interchange modes allow one to
mimic a hot, dense plasma using a cold, tenuous plasma.’™®
(The cold, tenuous plasma fails to properly scale the effect of
high “beta,” where beta is the ratio of plasma pressure to
magnetic pressure.'®) Typical temperatures are 0.3 to 3 eV,
with densities of 10° to 10'® cm ~3, and a magnetic field of
the order of a kilogauss. Such experiments have been carried
out at the University of California at Berkeley® and at Ir-
Vine. 5,9,10,20,22

The experiment at Dickinson College will operate at a
lower density than is customary for “cold” plasma experi-
ments in order to reduce the collisionality of the plasma. The
plasma will be injected radially,” not axially as is usually
done. This will ensure that the plasma is mirror trapped, and
will accommodate diagnostics at the end walls.'® The low
plasma density might lead to a situation where large-angle
scattering of neutrals is the dominant loss mechanism for
electrons. However, as shown at the end of Sec. 11, the linear
response is due to small-angle Coulomb collisions.

V. CONCLUSION

We have considered the response of trapped electron
number to fluctnating potential, focusing on time scales
where the potential fluctuates on an ion transit time scale.
Both large- and small-angle scattering yield almost identical
responses. Furthermore, the physical mechanism for the re-
sponse due to large-angle scattering is actually smali-angle
scattering at the loss boundary. We now have two different
responses. The original Kunkel-Guillory model remains
valid when the electron mean-free path is smaller than the
machine length (K'<1), while a new collisionless response
applies when X'> 1. The collisionless response can become
nonlinear at low amplitudes.

When the collisionless model is applied to interchange
modes in a fusion reactor, it predicts a degree of line tying
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that is about 300 times larger than had been predicted using
the collisional model. A mirror in the fusion regime with
relatively high density and low temperature might be signifi-
cantly influenced by line tying for the m = 1 mode. How-
ever, any attempt to design a line-tied axisymmetric mirror
fusion reactor will probably have to use blanket and/or feed-
back stabilization, because higher-order modes are much
less influenced by line tying, and because line tying for the
m = 1 mode on a fusion reactor could not reduce the growth
rate more than an order of magnitude below the ideal MHD
growth rate of 4v;; for an axisymmetric mirror. However, -
this new analysis does indicate that the blanket of a blanket-
stabilized fusion reactor need not differ too greatly from the
core plasma.

Several conclusions can be drawn concerning param-
eters of a small plasma device designed to study line tying in
fusion research. First, the device must confine ions for sever-
al bounces, so that we are in the collisionless regime. Second,
we need not concern ourselves with whether scattering with
neutrals contributes to particle losses and line tying because
large-angle and small-angle scattering yield similar forms of
line tying. Finally, an experiment to test this theory on a
small device cannot focus on an estimate of | R (w) |, but must
instead focus on the different @ dependencies predicted by
the collisional Kunkel- Guillory model, and the collisionless
model proposed by Volosov and Bekhtenev.

Future work will continue in three directions. A low-
density mirror experiment is being constructed that should
put line tying in the collisionless regime. Second, the numeri-
cal studies of blanket stabilization by Segal*® need to be
extended to the case where the blanket is collisionless (K > 1
in Fig. 5). Finally, the consequences of the low-amplitude
nonlinearity of the response need to be understood.
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