tring players have many reasons

for appreciating the distinction

between tempered and natural

scales. One of the beauties of

stringed instrument is that while
they are difficult to play “in tune” with
the piano, they can be morein tune than
a piano. A fine quartet plays harmonies
unimaginable from a piano or symphony
orchestra.

My viola is occasionally used as a
prop in lectures on the physics of music
to demonstrate why the natural scale, so
pleasing to the ear, needs to be tem-
pered slightly. This demonstration can
also be used as an exercise to boost the
confidence of any string student, frus-
trated by the unending struggle for per-
fect intonation.

The mystery arose soon after my high
school viola teacher started me on Bach’s
First Suite for unaccompanied cello. It
begins:

e
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These notes have always sounded
strange on a piano. Was it my inexperi-
ence with the piano? Does this particular
melody demand a stringed instrument
for mystical reasons only Bach could
understand? Or perhaps, that initial
exposure on the viola later spoils the
melody for any other instrument. If I had
heard the suite first on the piano, would
it have then sounded strange on the
viola? This puzzle was almost forgotten as
it faded into the background of the many
questions a high school student can ask.

Fourteen years later, the winter of
1984 was typical for Siberia, but wonder-
fully alien to a Californian. Only about
fifty American and Soviet scientists were
allowed to participate in long-term
exchanges that year; the Cold War was
still raging. My nine-month visit was pro-
ductive both professionally and person-




dlly: life-long friends were made (my wife
among them), and eventually two papers
on theoretical plasma physics were pub-
lished. I had plenty of time to play and
think about music, and the viola was a big
hit with the Soviet scientists.

One typically cold day, a Siberian
physicist visited my office to ask if the
musical scale could be explained mathe-
matically. I dropped my work for the
afternoon, and proceeded to discover a
simple exercise for the violin, viola, or
cello. The old mystery of Bach’s Suite for
cello, played on the piano, was finally
solved.

To put it bluntly, the piano’s tem-
pered scale can never be perfectly in
tune. Furthermore, the tempered B-nat-
ural is sharper than what the ear expects
to hear. Since Bach never said anything
about playing a well-tempered cello, I
continue to make the B-natural a little bit
flat, but now do so with confidence.

The Mathematics of
Natural and Tempered Scales

Mathematics can describe the difference
between natural and tempered scales,
which are so nearly identical that an
unsophisticated ear cannot distinguish
them. Concert A has a pitch (also called
frequency) of 440, meaning that the
string vibrates 440 times every second. As
any musician knows, some intervals sound
consonant, while others are dissonant.
Those notes that sound consonant with
440 A do so because they have pitch equal
to 440 times what mathematicians call a
rational fraction. Such a fraction is of the
form p/q, where p and q are integers
(e.g., whole numbers such as 0,1,2,3,...).
For example, if p= 2 and q = 3, then
p/q=2/3, and we have the pitch 440 x
(2/3) = 293.333, which a string player
would recognize as the open D, quite
consonant with 440 A. To obtain conso-
nance it is usually necessary that both p

T he recognition that |
| L we can choose pitch |

| transforms intonation |
 problems to an expres-|
| sion of musical style. |

and q be small. Thus a rational fraction
such as 3/11 would probably not produce
consonance because q = 11 is somewhat
large. Scales based on pitches defined by
these rational fractions (p/q) are called
natural scales, an appropriate name
because the ear naturally hears these
intervals as consonant.

Rational fractions (p/q) also occur in
a different musical context. If one person
claps two beats in the time it takes
another to clap three beats, the two peo-
ple form the same three-two resonance
that occurs when the pitches Aand D
form a perfect fifth. In other words, a vio-
lin’s A string vibrates three times in the
time it takes the D string to vibrate twice.

The pitches of the tempered scale are
obtained from a completely different for-
mula: 440 is multiplied by 2"/12, where n is
a positive or negative integer. To obtain
the tempered pitch for open D, set n
equal to -7. This yields: 440 x 27 =
293.665—which is slightly higher then
the pitch of the natural open D. The two
pitches (293.333 and 293.665) differ by
only 0.1 percent and are so close that we
produce much larger changes in pitch
with our vibrato.

If the human ear perceives the nat-
ural ratios as being consonant, why would
anybody invent the slightly dissonant tem-
pered scale? There are two closely related
answers to this question. First, only the
tempered scale allows a composer to
modulate, or transpose into another key,
without distorting the melody. A second
answer is that it is impossible to construct

a natural scale whereby all the so-called
consonant intervals are in tune. A com-
pletely natural scale is inherently incon-
sistent with itself because it demands
slightly different pitches for each note,
depending on the context in which the
note is played.

Math buffs will want to compile a list
of all rational fractions such that 1 < p/q
<2 where p<6 and q<6 and compare with
the list of consonant intervals shown
below. They might also count the number
of half-tones in an octave and a fifth to
see where the numbers seven and twelve
came from in the formula for the tem-
pered scale. (The choice of twelve half
tones in the tempered scale is somewhat
of a mathematical coincidence.)

Those with no love of mathematics
can take comfort in the fact that our
word algebra is derived from the Arabic
word for demon and simply remember
that different methods for calculating
pitches yield slightly different results.
Instead of focusing on the calculation,
learn how to use your instrument almost
as a calculator to create nearly identical
pitches for the “same” note. The follow-
ing exercise shows how to find two differ-
ent locations for the first finger E on the
open D string. Both locations are appro-
priate for a natural scale, yet are surpris-
ingly far apart.

The Exercise

You will need your instrument, a friend,
and a ruler. In order for violins, violas,
and cellos to follow this together, I will
focus on the first finger E on the D string,
instead of the B-natural in the phrase by
Bach. Start by tuning the instrument as
best you can. Don’t worry about whether
you are in tune to the piano or tuning
fork. Just make the strings exactly in tune
with each other by eliminating the beats.
Consider three notes: the open G, the
open A, and the E-natural formed by
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first

putting the first finger on the D string.

second third

fourth fingers

We want to find the proper location for

the first finger E. These three notes are

marked at the right for a violin.

Where does the first finger E belong? I

Play a double stop between the first fin-

A

G

ger E and the open G to make a sixth,

Tune it exactly. Next play a double stop nut
between the E and the open A to make a
fourth. Make this sound exactly in tune.

You should notice that the E has to be first

fingerboard

— to bridge

second third

fourth fingers

made slightly flatter when it sounds

against the lower string. There are actu-

ally two ways to play this E, depending on

which string vou play it against!

The distance your first finger moves is

o rm

quite large, although you probably need to

watch someone else do it to believe it. A nut

—p to bridge

calculation shows that your finger must
move a distance equal to the length of the
string divided by ninety. For example. the
string of a three-quarter-size violin is about
30 centimeters long, so that the finger

moves (.33 centimeters. This is approxi-
mately one-cighth of an inch, and the dis-
tance is even greater for larger instruments,

To get a visual idea of what this looks
like, suppose vou are marking finger posi-

tions on a beginner’s violin (E, F-sharp,
G, A on the D string). Only this time you
decide 1o mark two first finger Es. See the
fingerboard example above,
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This discovery helped me as a string
player in two ways: First, to play a first fin-
ger in the tempered scale, check against
the higher string because that natural har-
mony is closer to the tempered scale . Sec-
ond, I learned that the tempered scale
isn’t always right for me, and that explains
why Bach sounds “funny” on the piano.

The Calculation

To understand how this exercise works,
we shall calculate the pitch of the first fin-
ger E using two methods. Both are based
on natural intervals starting from open
G, using ratios (p/q) from the “just” nat-
ural scale, shown in the table below.” We
have already discussed one of these ratios:
3/2 corresponds to going up a fifth.

Minor third 6/5
Major third 5/4
Fourth 4/3
Fifth 3/2
Sixth 5/3
Octave 2/1

The first way to find the pitch of E is
to make a sixth with the open G string.
From the table, going up a sixth corre-
sponds to a ratio of 5/3. Using an arbi-
trary pitch of 196 for the open G string,
we obtain

(196) x (5/3) =326.667
as one “correct” pitch for E.

Recall from the exercise that the
“other” E was obtained by tuning with the
open A. To find this pitch from the open
G, we go up two fifths to the open A, and
then come down a fourth. Going up two
fifths introduces two factors of 3/2, and
going down a fourth introduces a factor
3/4, which is the inverse of 4/3 (because
here we go down a fourth). Thus, the sec-
ond method yields
(196) x (3/2) x (3/2) x (3/4) = 330.750
as another “correct” pitch for E.

The differences between the two
pitches (approximately 327 and 331) is
quite large, about 1 percent. Thus, to

//1\

obtain an approximate value for differ-
ence in placement of the first finger E,
one should move about 1 percent of the
string length. A more careful calculation
shows that the finger must move a dis-
tance equal to the string length divided
by ninety.

My personal experience suggests that
the psychological benefits of this exercise
are not insignificant. It proved that I
could actually detect those subtle differ-
ences in pitch my musically talented
friends and teachers claimed to hear
effortlessly. I had been playing a natural
scale for years without knowing it!

Previously, I viewed intonation as a
matter of scientific precision: if one gal-
lon of water is measured to the last drop,
then there is usually an error of a few
hundredths or even tenths of a drop.
Likewise, if a measurement of actual
pitch is carried to enough decimal places,
a discrepancy with the ideal always
emerges. This recognition that we can
choose pitch changed that mechanical
view, transforming the question of into-
nation from an unsolvable problem to an
expression of musical style and freedom.
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