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Most textbooks on quantum mechanics discuss a Gaus
wave packet, whose center is either stationary or movin
constant velocity.1–3 Here, auniformly acceleratingwave
packet is introduced. This solution to Schro¨dinger’s equation
for constant applied force, though not an energy eigens
is simpler than the standard non-wave-packet solution
pressed in terms of Airy functions.1 In the limit that the wave
packet’s initial width vanishes, it becomes a propagato1,2

permitting a general solution to be expressed in terms
initial conditions, c(x,t)5*c(x8,0)K(x8,x,t)dx8. In con-
trast to Ehrenfest’s theorem,1–3 no a priori understanding of
‘‘operator’’ or ‘‘expectation value’’ is needed to establish
correspondence between Schro¨dinger’s equation and a famil
iar kinematic equation of motion for uniform acceleration

x~ t !5x01v0t1 1
2at2. ~1!

Start with Schro¨dinger’s equation for a uniform force,
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and with any solution,c0 , to Schrödinger’s equation for the
special caseF50. For example, the Gaussian wa
packet,1–3

c0~x,t !5
@8b/p#1/4

A4b12i\t/m
expS 2

x2

4b12i\t/mD , ~3!

is well known. Without delving into the interpretation ofc,
one easily sees that~3! remains ‘‘centered’’ atx50 for all
time. One might expect that a uniform applied force,FÞ0,
would permit a wave packet ‘‘centered’’ at a point whic
accelerates according to~1!. Thus we attempt a solution o
the form,

c~x,t !5c0~x2x02v0t2 1
2at2,t !eiS~x,t !. ~4!

It is reasonable to assume that application of a unifo
force is equivalent to making a~nonrelativistic! transforma-
tion into an accelerated reference frame. Asucu2 represents a
physical variable~density!, which is invariant under this
transformation, it follows that both stationary and acceler
ing observers should perceive the same value forucu2.
Therefore, it is reasonable to conclude, without loss of g
erality, thatS(x,t) is a real valued function; this argumen
however, does not play a direct role in the particular solut
for S we obtain below. The calculation ofS(x,t) starts with
the chain rule, used to write the partial derivatives in Sch¨-
dinger’s equation~2! as:
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After substituting~5! into ~2!, two terms cancel due to th
fact that c0 obeys the free-particle (F50) Schrödinger
equation. The terms that remain can be arranged as:

H \~v01at!
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2m S ]S

]xD 2

1FxJ c050. ~6!

Equating to zero both the term in~6! proportional toc0 , as
well as the term proportional to]c0 /]x, is a sufficient
though not necessary condition for obtaining a particular
lution S. Upon imposing these conditions we obtain:

\

m

]S

]x
5v01at, ~7a!
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m
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5ax2
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2
~v01at!21

i\2

2m2

]2S

]x2 . ~7b!

From ~7a!, we see that this condition causes]2S/]x2 to van-
ish. Both partial derivatives in~7! can be integrated, eac
with arbitrary constants which are functions of the other va
able:

\

m
S~x,t !5v0x1axt2

1

2
av0t22

1
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a2t32

1

2
v0

2t

1constant. ~8!

Equations~3!, ~4!, and~8! combine to form an accelerat
ing Gaussian wave packet, subject to a uniform force. As
derivation of~7! did not make explicit use of the Gaussia
wave packet~3!, we actually have a class of solutions
Schrödinger’s equation which can be generated from any
lution c0 of the free-particle (F50) Schrödinger equation.

A propagator,K(x,x8,t), is a solution to Schro¨dinger’s
equation, subject to any imposed boundary conditions, wh
the variables are taken asx and t. Also, at t50, the propa-
gator must collapse to a Dirac delta function centered atx8,
so thatK(x,x8,0)5d(x2x8). In order to construct a propa
gator for a uniform applied force, multiply the free-partic
576© 2000 American Association of Physics Teachers



ke

a

n
s

t El
stationary Gaussian wave packet~3! by a constant, to obtain
a differently normalized stationary Gaussian wave pac
f0(x,t)5(8pb)21/4c0(x,t). At t50, it is easily verified
thatf0(x,0) is real, and that*f0(x,0)dx51. Next, allow the
initial width, b, to vanish. This establishesf0(x,0)5d(x).
Use the procedure indicated by~4! and~8!, with x05x8 and
v050, and let thef(x,t) be the solution, generated forF
Þ0. From ~8!, we see thatS50 at t50, which implies
f(x,0)5f0(x2x8,0)5d(x2x8). Thus,f(x,t)5K(x,x8,t)
satisfies the necessary conditions for being a propagator,
a general solution can be written asc(x,t)
5*K(x,x8,t)c(x,0)dx.

As another aside, a referee pointed out a connection
Hamilton’s principal function.4 Start with ~7!, and combine
v5v01at with dS/dt5]S/]t1v]S/]x, to show that
dS/dt5\L, where L5T2U ~kinetic minus potential en-
ergy! is the Lagrangian. Thus, Hamilton’s principal functio
is \S(x,t). Also, one can recover both de Broglie relation
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E5\v and p5\k, by equatingv to 2]S/]t and k to
]S/]x, and evaluating these derivatives atx5x01v0t
1 1

2at2.
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The magnetic field due to a dipole is well known1 and
given in a coordinate free form as2

B5
m0

4p

1

r 3 @3~m• r̂ ! r̂2m#1
2

3
m0md~r !. ~1!

Here,m is the magnetic dipole moment andr is the vector
from the source to the field point.

Often depicted with this result is an accompanying figu
which indicates the pattern of the field. However, it see
never to be explained in any detail how this field pattern
derived.

It is the object of this note to show that it is quite straigh
forward to derive the lines of force~or characteristic curves
or streamlines!. This derivation is one that an undergradua
student should be able to follow.

We begin by first dropping the delta function term in~1!
since we will be deriving the field lines for nonzeror. We
next simplify matters by taking the dipole moment,m, to lie
along they direction, i.e.,m5mj . This involves no loss of
generality since if the dipole moment points in some ot
direction, an adroit change of coordinate system can alw
be made so that our assumption is valid.

Because of azimuthal symmetry we can also restrict
discussion to the casez50. Once we have determined th
field pattern in thexy plane, then rotation about they axis
gives the field everywhere.
,
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With these simplifying assumptions we find that thex and
y values of the magnetic fieldB are given, respectively, by

Bx5
m0

4p

1

r 3 S 3m
xy

r 2 D ~2!

and

By5
m0

4p

1

r 3 S 3m
y2

r 22mD , ~3!

wherer 5Ax21y2.
According to Davis and Snider,3 the field lines are deter

mined from the equation

dx

Bx
5

dy

By
. ~4!

Substituting from~2! and ~3! into ~4!, cancelling out like
terms on each side leads to

dx

3xy
5

dy

3y22r 2 5
dy

2y22x2 . ~5!

From ~5! we obtain the equation of the field lines as

dy

dx
5

2y22x2

3xy
. ~6!
Field pattern of a magnetic dipole
J. P. Mc Tavisha)

School of Engineering, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF,
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A calculation is presented which gives the field pattern due to a dipole field. The approach should
be within the reach of an undergraduate student. ©2000 American Association of Physics Teachers.
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To solve this we introduce the variablesY5y2 and X
5 ln x, so that we can rewrite~6! as

dY

dX
5

4

3
Y2

2

3
e2X. ~7!

This first-order differential equation is straightforward
solve if we introduce the integrating factor4 e24X/3 and write
~7! as

d

dX
~Ye24X/3!52

2

3
e2Xe24X/352

2

3
e2X/3. ~8!

From this we easily obtain

Y5Ce4X/32e2X, ~9!

whereC is an arbitrary constant. Finally, we can write th
solution in terms of the original variablesx andy,

x21y25Cx4/3. ~10!

Fig. 1. The field lines for the magnetic dipole.
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Equation ~10! is the desired result, i.e., the form of fiel
pattern for the dipole field.

We now give a brief discussion of the significance of t
constantC. If we write C in the formC5D2/3 thenD has the
dimensions of length and~10! can be written as

S x

D D 2

1S y

D D 2

5S x

D D 4/3

. ~11!

We note that the field line describes a curve from the ori
which extends as far as the distanceD, so thatD clearly sets
the length scale.

Shown in Fig. 1 is the result of plotting Eq.~11! for the
casesD50.25, 0.5, 0.75 and 1.0, with 0,x<D andy.0.
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The expression below Eq.~11! for the electric current
should be vCV0Aq0(22q0 /CV0)/CV0. Equation ~12!
should be replaced byEL5LCi 0

2/25q0V02q0
2/2C. The en-
ergy conservation, however, holds valid. The sum of the
ergies stored in the capacitor and the inductor is equa
q0V0 , which is the energy supplied by the battery.
CHEMISTS AND MOLECULES

It is not chemists who make molecules react. That is done by the molecules. The chemists only
set the conditions, and then watch.

George Wald, in the Introduction to Lawrence J. Henderson,The Fitness of the Environment~Macmillan, New York, 1913,
reprinted 1958!, p. xxiv.
Erratum: ‘‘Ideal capacitor circuits and energy conservation’’
†Am. J. Phys. 67 „8…, 737–739 „1999…‡
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