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Most textbooks on quantum mechanics discuss a Gaussian gy gy,
wave packet, whose center is either stationary or moving at —— = —_—€'°
constant velocity3 Here, auniformly acceleratingwave
packet is introduced. This solution to Schiger’s equation Py Py aS diy
for constant applied force, though not an energy eigenstate, = 1S42i ——
is simpler than the standard non-wave-packet solution ex-
pressed in terms of Airy functiortsin the limit that the wave J
packet's initial width vanishes, it becomes a propagafor, —lﬂo(&
permitting a general solution to be expressed in terms of
initial conditions, ¥(x,t)=f(x’,0)K(x',x,t)dx’. In con-  After substituting(5) into (2), two terms cancel due to the
trast to Ehrenfest’s theoreti® no a priori understanding of fact that ¢, obeys the free-particle =0) Schralinger
“operator” or “expectation value” is needed to establish a equation. The terms that remain can be arranged as:
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iar kinematic equation of motion for uniform acceleration,

— — —tis=—
i m dx| dx ot 2m dx
X(t)=Xo+vot+ 3at?. (1) , ,
Start with Schrdinger’s equation for a uniform force, - 2?1_(0_8) + FXJ o=0. (6)
m\ dx
h oy —h? Py
S om (20 Equating to zero both the term {8) proportional toys,, as

_ _ . _ well as the term proportional t@q/dx, is a sufficient
and with any solutiony, to Schralinger's equation for the  though not necessary condition for obtaining a particular so-
speciatl1 3caseF=0. For example, the Gaussian wave lution S Upon imposing these conditions we obtain:
packet,”
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is well known. Without delving into the interpretation ¢f o ax 5 (vot at)*+ > (7b)

one easily sees th#B) remains “centered” ak=0 for all . - 5

time. One might expect that a uniform applied forge0, ~ From(7a), we see that this condition caus#&s/ax* to van-
would permit a wave packet “centered” at a point which ish. Both partial derivatives iri7) can be integrated, each
accelerates according (d_) Thus we attempt a solution of with arbltl‘ary constants which are functions of the other vari-

the form, able:
- ot — 1512 1) @IS h 1 1 1
(X, 1) = ho(X—Xo—vot—zat%,t)e : 4 2 S(x,t) = pox -+ axt— Eavotz— 6a2t3— Evgt

It is reasonable to assume that application of a uniform m
f_orcg is equivalent to making @onrelativisti¢ transforma- + constant. (8)
tion into an accelerated reference frame.| & represents a i i
physical variable(density, which is invariant under this  Equations(3), (4), and(8) combine to form an accelerat-
transformation, it follows that both stationary and accelerati"d Gaussian wave packet, subject to a uniform force. As the
ing observers should perceive the same value |fof derivation of (7) did not make explicit use of the Gaussian

Therefore, it is reasonable to conclude, without loss of gen\-’svgr\]’r.edﬁfcgﬁé@' u";ﬁo?]cwgl(% 2:;]’%: Celngat(g ds}cr)cl,untqlo;ns tsf)o-
erality, thatS(x,t) is a real valued function; this argument, 9 q 9 y

however, does not play a direct role in the particular solutioAUt'on o Of the free-particle k=0) Schralinger equation.

for Swe obtain below. The calculation &(x,t) starts with A gropagstt)t_or,ft(x,x t) IS adsglutlocr; to Scr:jlq?_ngersh
the chain rule, used to write the partial derivatives in Sehro équation, subject to any Imposed boundary conditions, where

dinger's equatiorn(2) as: the variables are taken a(s_andt. Also, att_=0, the propa-
gator must collapse to a Dirac delta function centerex!’ at

‘9_¢: ‘9_% IS4+ (—po— ‘9_% i so thatK(x,x’,0)= 6(x—x"). In order to construct a propa-

a ot 0 gator for a uniform applied force, multiply the free-particle
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stationary Gaussian wave pack8} by a constant, to obtain  E=%w and p=7%k, by equatingw to —dS/dt and k to
a differently noErD?Iized stationary Gaussian wave packelyg/gx and evaluating these derivatives atxg+ vt
bo(X,t)=(8mb)  ““po(x,t). At t=0, it is easily verified +lat?.

that ¢o(x,0) is real, and thaf ¢o(x,0)dx= 1. Next, allow the
initial width, b, to vanish. This establishesy(x,0)= 6(x).

Use the procedure indicated 4) and(8), with x,=x" and
vo=0, and let the¢(x,t) be the solution, generated fér This work was partially sponsored by P.E.T ®artners
#0. From (8), we see thatS=0 at t=0, which implies for Excellence in Teacher EducatiomNSF Grant No. DUE-
d(x,0)= po(x—x",0)=8(x—x"). Thus, p(x,t)=K(x,x',t) 9453612

satisfies the necessary conditions for being a propagator, and

a genera| solution can be written asd/(x,t) \F/)\g)srlg pEeIrgJ;?oedT:;\(t;gZG%epartment of Physics, University of Texas at El

= JK(x,x",t) ¥(x,0)dx. 'Richard L. Liboff, Introductory Quantum Mechanidgs\ddison—Wesley,
As another aside, a referee pointed out a connection toReading, MA, 1998 3rd ed., pp. 258—267, 159—160.

Hamilton’s principal functiorf. Start with (7), and combine  ?David S. SaxonElementary Quantum Mechani¢dolden-Day, San Fran-

v=vgo+at with dS/dt=94S/dt+vdS/dx, to show that  cisco, CA, 1968 pp. 61-64, 97.

. B . . . . SHans C. OhanianPrinciples of Quantum MechanicéPrentice—Hall,
dS/dt=#%L, whereL=T—U (kinetic minus potential en- Englewood Cliffs, NJ, 1990 pp. 9, 40, 132.

grgy) is the Lagrangian. Thus, Hamilton’s prinCiPal funqtion “Herbert GoldsteinClassical Mechanic§Addison—Wesley, Reading, MA,
is AS(x,t). Also, one can recover both de Broglie relations, 1981, 2nd ed., pp. 438—442.
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A calculation is presented which gives the field pattern due to a dipole field. The approach should
be within the reach of an undergraduate student.20@0 American Association of Physics Teachers.

The magnetic field due to a dipole is well knotvand With these simplifying assumptions we find that thand
given in a coordinate free form as y values of the magnetic fielB are given, respectively, by
Mo 1 - 2 _ Mo i XY
B=_ r3[3(m-)f —m]+ 5 uema(r). (1) Bx=7, 3|3M2 )
and

Here,m is the magnetic dipole moment amds the vector
from the source to the field point. wo 1 y?
Often depicted with this result is an accompanying figure, By=4— —g(Sm —— m) , 3
which indicates the pattern of the field. However, it seems mr '
never to be explained in any detail how this field pattern is, harer = BEFY2.
derived. : L . According to Davis and Snidérthe field lines are deter-
It is the object of this note to show that it is quite straight- mined from the equation
forward to derive the lines of forcer characteristic curves
or streamlines This derivation is one that an undergraduate  gx dy
student should be able to follow. BB
We begin by first dropping the delta function term(ib x y
since we will be deriving the field lines for nonzeroWe Substituting from(2) and (3) into (4), cancelling out like
next simplify matters by taking the dipole moment, to lie  terms on each side leads to
along they direction, i.e.,m=mj. This involves no loss of
generality since if the dipole moment points in some other dx dy dy
direction, an adroit change of coordinate system can always ﬁ: 3y2—r2 - 2yZ—x2’ ®
be made so that our assumption is valid.
Because of azimuthal symmetry we can also restrict our From (5) we obtain the equation of the field lines as
discussion to the case=0. Once we have determined the s 2
field pattern in thexy plane, then rotation about theaxis dy 2y"—x ®)
gives the field everywhere. dx 3xy

)
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06 T Equation (10) is the desired result, i.e., the form of field
pattern for the dipole field.

y 04 We now give a brief discussion of the significance of the
constan(C. If we write C in the formC=D?3thenD has the
02 dimensions of length an(l0) can be written as
2 2 43
0 (i + l) = X (11
0 025 05 075 1 b/ \b/ D
x We note that the field line describes a curve from the origin

which extends as far as the distarizeso thatD clearly sets
the length scale.

Shown in Fig. 1 is the result of plotting EqL1) for the
casedD =0.25, 0.5, 0.75 and 1.0, with<Ox<D andy>0.

Fig. 1. The field lines for the magnetic dipole.

To solve this we introduce the variabléé=y? and X

=Inx, so that we can rewrité) as ACKNOWLEDGMENT
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This first-order differential equation is straightforward to Y o o
solve if we introduce the integrating facta **® and write Electronic mail: .p.mctavish@livjm.ac.uk

(7) as The references on this subject are extensive, see for example, D. J. Grif-
fiths, Introduction to Electrodynamic&rentice—Hall, New York, 1989
d 2 2 2nd ed., pp. 235-239; J. D. Jacks@lassical ElectrodynamicéWiley,
&(Y e B =— §e2)<e*4x/3: — §eZX/3_ (8) New York, 1975, 2nd ed., pp. 180-184; P. Lorrain, D. R. Corson, and F.

Lorrain, Electromagnetic Fields and Wavésreeman, New York, 1988
. . . 3rd ed., pp. 337-340; J. Vanderlindelassical Electromagnetic Theory
From this we eaSIIy obtain (Wiley, New York, 1993, Sec. 2.1, p. 37.
Y:Ce4></3_ ezx (9) °D. J. Griffiths, Introduction to ElectrodynamicgPrentice—Hall, New
' York, 1989, 2nd ed., pp. 248—249.
whereC is an arbitrary constant. Finally, we can write the °H. F. Davis and A. D. Snideintroduction to Vector AnalysiéAllyn and

solution in terms of the original variablesandy, Bacon, Boston, 1987 5th ed., pp. 110-113.
4G. StephensonMathematical Methods for Science Studetitengman,
x2+y?=Cx*3 (10 London, 1973, 2nd ed., pp. 393—394.

Erratum: “Ideal capacitor circuits and energy conservation”
[Am. J. Phys. 67 (8), 737-739 (1999)]
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The expression below Ed11) for the electric current ergy conservation, however, holds valid. The sum of the en-
should be wCVy\/qe(2—0o/CVo)/CV,. Equation (12) ergies stored in the capacitor and the inductor is equal to
should be replaced b, =Li S/2= qOVO—qSIZC. The en- Vg, Which is the energy supplied by the battery.

CHEMISTS AND MOLECULES

It is not chemists who make molecules react. That is done by the molecules. The chemists only
set the conditions, and then watch.

George Wald, in the Introduction to Lawrence J. Hender$ome, Fitness of the Environmeacmillan, New York, 1913,
reprinted 1958 p. xxiv.
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