Transverse bending waves and the breaking broomstick demonstration
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When a broomstick is supported at both ends by two wine glasses, a strong downward blow to the
center will break the stick, leaving the wine glasses undisturbed, provided care is taken to cushion
the wine glasses against an initial and brief downward motion of the ends of the broomstick. This
downward motion is analyzed and estimated to be about 1 mm in magnitude. Qualitative
experimental evidence of this motion is easily obtained using a force probe to monitor a light and
nondestructive tap to a 2-m measuring stick. The method of analysis developed here leads to a
simple derivation of the dispersion relation for transverse bending waves on a long rorh97©
American Association of Physics Teachers.

[. INTRODUCTION supported at both ends by pins which rest on two wine

Images of transverse bending waves rushed through mglasses, as shown in Fig. 1. A strong downward blow to the
mind as | first saw the “Breaking Broomstick Demonstra- center breaks the broomstick, leaving the wine undisturbed
tion” and wondered if it might all end with broken glass and as the two broken broomstick halves fold between the wine

spilt winel In this very old demonstration, a broomstick is glasses and fall to the floor. Transverse bending wade®
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Fig. 1. Sketch and definition of variables for the “Breaking Broomstick
Demonstration.” The two rigid rods of length/2 are assumed to be con-
nected by a bending spring with spring constant

exert a temporary downward force on the wine glasses, as

suggested by Mamola and Polldrdiho pointed out the need 10 1 s
for support pins to cushion against these waves. The purpose ] s ¢ 8
of this paper is to analyze this downward motion in detail by 0.5 ;

modeling each half of the broken broomstick as two rigid (b)
measured

force (N) 0.0 i

rods connected by a spring mechanism. Also, the method of

analysis presented here is extended to produce an easily un-

derstood derivation of the dispersion relation for transverse 1

bending waves on a long rod. This derivation illustrates that 051

transverse bending waves and string waves differ in the way

potential energy is stored. 401 — ] i ] ]
To show students why the demonstrationight work, "o 2 4 6 8 10

place a long and narrow block on a table so that one end can

be struck sharply in a direction parallel to the surface of the

table and perpendicular to the long axis of the block. Place

two small objects of different color on opposite sides of theFig. 3. Force measured by a probe at end of a “2-m” stick. The rod was

block at the unstruck end. Ask students to predict whichstruck at approximately=0. Two time scales are shown for the same event

object will move as the block is struckThis needs to be 2"d measurement.

practiced beforehand; if you are not careful, both objects will

move) The applied impulse gives rise to two motions, one

linear and the other rotational. It has been shbwmat the

time (ms)

rotational motion dominates at the unstruck end, causing it to
go in a direction opposite to the impulse. Therefore the
“Breaking Broomstick Demonstration’should work, as-
suming the broken broomstick halves remain perfectly rigid
as they turn upward and fall to the floor. But no object is
perfectly rigid!

calculated displacement

35 7 Although it is probably best to do this demonstration with

] 7 a stick that only looks like a broomstick, we shall refer to it

30 7 7 as a “broomstick.” The problem becomes tractable only if
] Pt / one either assumes that the broomstick is not broken by the

25 1 — i rod;! or that the broomstick is broken immediately. Here, the

] / latter simplification is made, so that the free motion of a

20 4 4 half-broomstick is calculated. This half-broomstick is mod-
- ] eled as two rigid rods connected by a bending-spring mecha-
£ 15 3 nism. The calculated result is shown in Fig. 2, where it can
g ] } be seen that an initial and brief downward displacement of
10 4 4 about 1 mm into the wine glass is predicted before the stick

] moves upwards and away from the wine glass.
54 Qualitative experimental evidence for the initial down-
] ward motion is easily obtained using a force probe available
03 in many university classroonisThe force probe is attached

to one end of a 2-m measuring stick which was tapped

5 ] lightly at the center. The result is shown in Fig. 3, where the

i ’ M o 10 ’ 15 similarity between the calculated displacement of Fig. 2 and

the measured force in Fig(l® is apparent. These results are

time (ms) fairly consistent with careful experimental observations and

calculations made over 40 years ago on steel rods, where the
equation of motion for transverse bending waves was solved

Fig. 2. Calculated displacement of the unstruck end of a broomstick. for initial conditions appropriate for this problet.
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[I. CALCULATION OF INITIAL DOWNWARD obtained by finding the inverse of a3 matrix, or by using

DISPLACEMENT algebra.
o Using the new B,R,T) variables, the three equations of
In order to model transverse vibrations, we make somegnotion are quite simple:

simplifying assumptions about one of the pieces shortly after

. ' i . 1920

the stick has been broken. First, we treat the half-stick as an 5, — B=12F, (43
isolated object of length, subject to a vertical forcE at the L

end where the blow was struck. The opposite end is at the .

wine glass and taken to be completely free. Bending motion MR=6F, (4b)

is modeled as that of two perfectly rigid rods connected by a MT=4F (40)
spring mechanism that tends to keep the rods parallel. We T
shall assume small deviations from the initial position. What makes the variableB(R,T) special is that they

Let the two rigid rods have lengit/2 and mas$1/2, and  represent the three normal modes of the system. They also
let the bending-spring mechanism obey a generalization dfacilitate a derivation of(4) that does not require the
Hooke’s law, with restoring torque proportional to the angle“pseudo-torque.” From3) and also(7) and(10) below, the
of bending. Define the transverse coordinates for three pointsagrangian can be constructed from the potential energy
on the half-broomstick byy,, 7,, 75, as shown in Fig. 1. We U=20¢B?/L?— [Fd7,, where 7, as well as kinetic energy
let F>0 represent an upward force, so that the applied forc& must be expressed in terms of th#, R, T) variables. For
can be modeled as a negative impulse. Since the displacexample, the kinetic . energy takes on a simple
ments are assumed small, the angles are approximated asform, K=M[3T?+4R?+ B?]/96, where it is worth noting

71— 15 that cross terms such &R are mercifully absent.

a= , B= U 772_ (1) Regardless of whether we use a “pseudo-torque” or La-
L/2 L/2 grangian formalism, Eq(4) is easily solved if we let the
With three variableg7,,7,,7;), we need three equations of downward force be an impuls€z—§(t), so thatR (rota-
motion: tion) and T (translation describe free particles, while the
. .. variableB (bending acts like a simple harmonic oscillator.
E=M Mt 275+ 73 (23 The impulse gives each variabl8,R,T) initial conditions.
4 ' After finding (B,R,T) for such an impulse, the variables are
L 1/MV/L\2 converted back tdz;, 7,, 73). The result for the end near
—lF=Z[=|[=] [a-8] (2b) the wine glassy,(t) is
2 312/12 ' 3v
A .
1/M L 2__ 1L M B 7]3:VAt_ Z S”X(,L)t), (5)
§<§)(§) B=—olatP) =555 n2 (20)
where w=(1920)"2. " is the natural frequency of bending

The first equation(2a) is Newton’s second law for an ob- motion and the magnitude of the impulse force is defined so
ject of massM, whose center-of-mass coordinates arethatV, is the time-averaged velocity of the unstruck end.
(m+2n,+ 55)/4. The second equatigi@b) is a torque equa- Thus 7=Vt represents the motion up and away from the
tion about the center of mass of the entire systéfihe  wine glass which makes the demonstration work. The small-
spring mechanism does not enter here because only exterrggle approximations preclude modeling of rod rotation be-
torques contribut¢.The third equation2c) describes rota- yond this stage. The second term() oscillates in time and
tional motion of theunstruckrod about the pivot point con- is associated with bending motion.
necting the two rods. It contains two torquelike terms on the Equation(5) is used to ploty(t) for realistic values ofv
right-hand side(RHS). The first term, —o(a+ ), is the andV, in Fig. 2. The value ofV,=2.6 m/s was obtained
torque caused by the spring mechanism wheis the gen- from Ref. 1, which contains a picture made from a videotape
eralized spring constant. The second term on the RH8af  of the demonstration. From Fig. 3 of that reference, one sees
is an inertial “pseudo-torque” proportion td?#,/dt?. To  that the stick rises approximately 4.3 cm during the first 1/60
understand this term, note that a pseudo-force of magnitudef a second. To obtait, we use the oscillation freguency of
ma=(M/2)a acts at the center of mass of the unstruck rodthe lowest-order modén=1) of a free vibrating rod:
wherea is the acceleration of the pivot point. This “pseudo- 2

" X n+1/2
torque” can be used to shut a car door by carefully backing =y bk?=pb , (6)
up, and then slamming on the brakes. It is analogous to the L
“centrifugal force” and can be derived from Newton’s sec- \yhere the radius of gyratioh=R/2~6.3 mm, for a cylinder

ond law as seen in an accelerating reference f'%me- of radiusR. The lengthL of a typical half-broomstick is
While manipulation of these equations is tedious, they argsren to be 0.825 m.

linear, and can be simplified by a transformation of variables Equation(6) is only an approximation. As seen from the
from (71,7,,75) to (B,R,T), where dispersion relatiort11) below, there are four values of wave
B=1n,— 27+ 73, numberk for a given frequencyw: two real. and two imagi- _
nary. The actual lowest-order wave function for a free rod is
R= 71— 73, (3)  a superposition of cokk) and coshkx) =cos(kx), with k
being selected to satisfy a boundary condition somewhat
more complicated than that associated with common string
are new variables designed to represent bending, rotatiomaves®
and translation of the center of mass, respectively. The linear The speed of sound in wood is typically between 1300 and
transformation back fromB,R,T) to (#,7,,73) is easily 4700 m/s, so we take an average value 3000 m/s for

v

T=n1+2n9,+ 53
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our calculatior? This yieldsw~640 s 1. From either Fig. 2 shorter. Frequency depends very strongly on wavelength, as
or Eqg. (5), the maximum downward displacement of thecan be seen from the dispersion relationpock
broomstick is 0.28,/w~1 mm, with perhaps a factor of 2 o«(wavelength 2
uncertainty due to lack of knowledge of the sound speed in
wood, and due to the fact that higher order modes are ex-
cluded by the model. IV. DERIVATION OF WAVE EQUATION

We are now in a position to check our assumption that the
broomstick was immediately broken by the blow. First, we The model used here can be extended to derive the wave
estimate the speed of the rod which strikes the blow. A baseequation for transverse bending modes. My derivation is
ball thrown at a speed of 14 m/s will travel 20 m, a distancesimilar to that of Crawfordin that he treats the system as a
easily achieved with only an arm and wrist motion. Such aarge number of discrete and rigid elements connected by
hand speed would be approximately doubled by the levemassless springs. However, Crawford’s derivation requires
arm of a rod. | believe the rod speed is larger because than extra set of springs and motions not needed here. In con-
chopping motion is very comfortable for the arms and backfrast, the derivations found in most textbooks are difficult to
and because the wrist is able to rotate the rod effectivelygrasp because they involve equations of motion for differen-
Since the person doing the demonstration is in no mood tdial elementg.
strike a light blow, it is reasonable to assume that the broken We consider a long chain of rigid rods of length =L/N
ends of the broom at the center moved down more than 2.8nd masan=M/N, each connected by a mechanism with
cm during the first millisecond. generalized spring constamt Neglecting a small error at the

It is interesting to compare other measurements with myfirst and last rods, the kinetic ener¢fyis due to motion of
estimate of rod spee@8 m/9, which is twice the speed of a the center of mass, plus rotational motion:
baseball thrown without a wrist snap. Investigations of karate N

: : 2 N 2/ : 2
blows indicate hand speeds of 5—-10 H/s-3A lower bound K= 1 m> 7+ 77J+1) D 1mkF ( U 77j+1)
on the rod speed can be obtained from the observed 20-m/s 2 = 2 =1 2 12 I '
speed of a sledgehammer used to break the block in the (7

“Bed of Nails Demonstration.™ . :
. . . . Since| 7;|~|7;.1/<|%;— 741/, we can drop the rotation
From Fig. 2 we see that the broomstick m|ght.be in theterm and approximate the first term as
process of being broken when the downward motion occurs o
at the wine glasses. This confusion as to when the broom- 1 Nt Mj41 2 m o
stick breaks adds further uncertainty to the calculated value K~ 2 mz 2 ) Z ()

of the downward displacement.

A .
~5 [tores @
lll. OBSERVATIONS WITH FORCE PROBE AND
MEASURING STICK where the last term is taken in the limit tHdt—oc, andX\ is
the mass density per unit length. The potential energy is
A related demonstration is simple to set up if one has dound by observing that the difference between two adjacent
force probe compatible with motion detectors often used inrods is
the teaching of introductory physiédt shows students that _ _ P
there is a brief downward force on the broomstick. And it 5, 7i=1" 7 MiT Wi+l Mi-1m LU T Wj+a 9)
shows that there will be a large and not very brief downward | | | '
motion onto the wine glasses in the event that the blow does
not break the broomstick. ) 5
s oy _ 1 L —2n+n
The broomstick is replaced by a wooden “2-m” measur U= 5 U(Aa)2=g > ( Nj-17 47 771+1)

so that

ing stick made of hard woo¢cross section 825 mm. A [
light tap to the center of the measuring stick will excite a )
spectrum of bending modes. One end of the measuring stick al J’ ds (10

_—

d?n(s)
is attached to the force probe which collects data continu- 2 d<?
ously and is self-triggered in such a way as to record data

prior to experiencing any force above a threshold value se- At this point, there are three paths to a dispersion relation
lectable by the user of the software. or wave equation. The “quick and dirty” derivation does not

From Fig. 3a), we see that the measuring stick is again'€duire kn_owledge_ of Lagrang|an mechanics, but yields o_nly
pushing down after 20 ms. This can be attributed to thé® dlsper25|on zrelat|02n. One 23|mpl notes that, for standing
stick’s lowest-order mode, which undergoes approximately §/avesd”7/dt"=—w"yandd”»/ds’= —k"». Also, a stand-
quarter-cycle in Fig. @. The observed 240-ms period is NG Wave’'s maximum potential and kl_netlc energy are equal,
consistent with a sound speed of 4600 m/s in the woodY =K, whereU is evaluated at maximuny (when dz/dt
provided we take the wavelengthmX to be 4 m. This -0 andK is evaluated at maximurdy/dt (when 7=0).
lowest-order mode is absent in both the mathematical mod?ﬁth the replacement of differential operators dyor k, the

and the actual demonstration because the broomstick h&&SPersion relation follows from equating the integral forms
been broken into two pieces before this low-frequency modé® and(10) for T and U, respectively, and noting that ev-

undergoes one cycle. erything factors out except
It is also worthwhile to let students shake the measuring ol
stick and feel how low the fundamental frequency is. A simi- ~ w?=— k%, (17

lar exercise is to hold a 12-in. ruler down near the edge of a A
table and see how the free end vibrates as one makes fiom which the wave equation,
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Fig. 4. An upward virtual displacement of the central bending mechanism
gives rise to a downward force. The bending angles going from left to right
are(6_,6,6,) and are defined so that=0 for no bending, and is negative,
while both 6_ and 6, are positive. The angled_ and 6, change by an
amountéd=3n/l, and 6 changes by twice that amount.

#n_ ol o'y . o o
=== (12 Fig. 5. Schematic drawing of a very long rod bent into a circle of raiius
at A0S The dotted circle represents matter neither compressed nor extended by the
: : . ending. Matter outside the dotted circle is extended while matter inside the
SZHﬁeedguessed or postulated, but not, in my view, ”goroushzotted circle is compressed. The distance from the dotted line is

In the unlikely event that you find yourself doing this

demonstration to a physics class studying the last chapter %fne spring mechanism is impossible for finite. The sim-

Goldstein,” the most elegant way to derive the wave equa- est resolution of this problem is to allow the spring mecha-
tion is to note that the Lagrangian is expressed as an integrBl : P h pring

of the Lagrangian densityt =/ % (ay/dt,d?5las?)ds. A nlsém added motion that allows for slight elongation of the
slightly more pedestrian but equally rigorous derivation is to'°%>: : . . .
obgt;ainyfinite dir;ference equatio%s fr)(;mgthe Lagrangiar,K Our final task is to relate the idealized system of rigid rods
—U, as expressed by traimsin (8) and(10). The algebr,a is and massless springs to a physical rod consisting of material

straightforward but tedious. Two key steps will illustrate the /i lYoung’s modulusk, and r?ass (_jensgy). Supplosfe a
methodi® very long rod is bent into a circle. Using the model of rigid

rods, we haveN spring mechanisms, each bent by an angle
ou J | o ( Nj-1— 27+ ,7].“) 2 of 27/N, so that the potential energy is
N B dnn | 2

[ o [2m\?
21N

{three terms in the sum Next, we bend a physical rod into a large circle of radius
R=L/2#. Each atom of the rod is compressed or expanded
d Mne2—27Tn_1+F 7n by an amountAL, whereAL/L=x/R with x being the dis-
o | tance to the dotted line shown Fig. 5. The force of compres-
sion at an element of surfacda is E(AL/L)da, and
Mo1— 200+ st 2 the energy required to attain this co.mpression is
I (E/2L)(AL)?da. Integrating over a cross section of the rod,
we have

N

>
=1
U=N

(14

7n
2

g
T2

+

+

2
M= 2Mn-1tF Mn-2 B E (AL)Z _ E [4m? 5
| ) ] (1339 U—Ef L da—E T J'X da. (15

and The mass density per unit lengthand mass density per unit
4 volume are related byx=pfda. Using the equality of the
M2~ 4724 60ni2= 472t Mnia| _ I two forms of potential energgl4) and (15), one obtains
14 ast )
ol E[x“da E

(13b N5 Jda —, b2, (16)

There is also a derivation of the wave equation that does ’_) ’,) . . .
not use Lagrangian mechanics. While accessible to the wid¥hich defines the radius of gyratioh, Insertion of(16) into
est audience, this derivation is actually the most difficult.(12) Yields the usual wave equation for transverse bending
The forceF on a bending-spring mechanism can be calcu/nodes. . .
lated by making a virtual displacemet of one mecha-  The location of the dotted line in Fig. 5 and hence the
nism, keeping all other mechanisms motionlésst allowing ~ ©rigin of x has not been defined. This problem is easily rem-
them to benil The energy of bending associated with this €died by minimizing the potential energy required to bend
displacement i §7= ¢ 56; , where the suni, is over the the long rod_ into a circle. V\/_e.m_ust choq@ the Iocatlg)n of
three mechanisms that bend when one mechanism movefe dotted line, so as to minimize the integfék—x,)“da.
From Fig. 4, one obtains a downward restoring force ofSetting to zero the derivative of this integral with respect to
(6_—26+0,)(a/1), where 6~ is the bending angle of the Xo. We see thafxda=[X,da, so that/xda=0 for a proper
mechanism to théleft/right), and 6 is the bending angle of choice of origin(x,=0).
the mechanism that moves. Singe —26+ 6, )*#6/9s> and
006527?/682, we see that:océzn/&tzm—o""lﬁ/&szl. The wave y TRANSVERSE STRING WAVES
equation follows by assuming that all the mass is located in
the bending mechanisms. What makes this derivation “un- It is instructive to compare transverse bending waves in a
comfortable” is the fact that a displacement of one and onlyrod with transverse tension waves on a string. The formula

lim
1—0
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