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When a broomstick is supported at both ends by two wine glasses, a strong downward blow to the
center will break the stick, leaving the wine glasses undisturbed, provided care is taken to cushion
the wine glasses against an initial and brief downward motion of the ends of the broomstick. This
downward motion is analyzed and estimated to be about 1 mm in magnitude. Qualitative
experimental evidence of this motion is easily obtained using a force probe to monitor a light and
nondestructive tap to a 2-m measuring stick. The method of analysis developed here leads to a
simple derivation of the dispersion relation for transverse bending waves on a long rod. ©1997

American Association of Physics Teachers.
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I. INTRODUCTION

Images of transverse bending waves rushed through
mind as I first saw the ‘‘Breaking Broomstick Demonstr
tion’’ and wondered if it might all end with broken glass an
spilt wine.1 In this very old demonstration, a broomstick
505 Am. J. Phys.65 ~6!, June 1997
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supported at both ends by pins which rest on two w
glasses, as shown in Fig. 1. A strong downward blow to
center breaks the broomstick, leaving the wine undistur
as the two broken broomstick halves fold between the w
glasses and fall to the floor. Transverse bending waves2–6 do
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exert a temporary downward force on the wine glasses
suggested by Mamola and Pollard,1 who pointed out the need
for support pins to cushion against these waves. The purp
of this paper is to analyze this downward motion in detail
modeling each half of the broken broomstick as two rig
rods connected by a spring mechanism. Also, the metho
analysis presented here is extended to produce an easil
derstood derivation of the dispersion relation for transve
bending waves on a long rod. This derivation illustrates t
transverse bending waves and string waves differ in the
potential energy is stored.
To show students why the demonstrationmight work,

place a long and narrow block on a table so that one end
be struck sharply in a direction parallel to the surface of
table and perpendicular to the long axis of the block. Pl
two small objects of different color on opposite sides of t
block at the unstruck end. Ask students to predict wh
object will move as the block is struck.~This needs to be
practiced beforehand; if you are not careful, both objects w
move.! The applied impulse gives rise to two motions, o
linear and the other rotational. It has been shown1 that the

Fig. 1. Sketch and definition of variables for the ‘‘Breaking Broomsti
Demonstration.’’ The two rigid rods of lengthL/2 are assumed to be con
nected by a bending spring with spring constants.

Fig. 2. Calculated displacement of the unstruck end of a broomstick
506 Am. J. Phys., Vol. 65, No. 6, June 1997
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rotational motion dominates at the unstruck end, causing
go in a direction opposite to the impulse. Therefore t
‘‘Breaking Broomstick Demonstration’’should work, as-
suming the broken broomstick halves remain perfectly ri
as they turn upward and fall to the floor. But no object
perfectly rigid!
Although it is probably best to do this demonstration w

a stick that only looks like a broomstick, we shall refer to
as a ‘‘broomstick.’’ The problem becomes tractable only
one either assumes that the broomstick is not broken by
rod,1 or that the broomstick is broken immediately. Here, t
latter simplification is made, so that the free motion of
half-broomstick is calculated. This half-broomstick is mo
eled as two rigid rods connected by a bending-spring mec
nism. The calculated result is shown in Fig. 2, where it c
be seen that an initial and brief downward displacemen
about 1 mm into the wine glass is predicted before the s
moves upwards and away from the wine glass.
Qualitative experimental evidence for the initial dow

ward motion is easily obtained using a force probe availa
in many university classrooms.7 The force probe is attache
to one end of a 2-m measuring stick which was tapp
lightly at the center. The result is shown in Fig. 3, where t
similarity between the calculated displacement of Fig. 2 a
the measured force in Fig. 3~b! is apparent. These results a
fairly consistent with careful experimental observations a
calculations made over 40 years ago on steel rods, where
equation of motion for transverse bending waves was sol
for initial conditions appropriate for this problem.3,4

Fig. 3. Force measured by a probe at end of a ‘‘2-m’’ stick. The rod w
struck at approximatelyt50. Two time scales are shown for the same eve
and measurement.
506Guy Vandegrift
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II. CALCULATION OF INITIAL DOWNWARD
DISPLACEMENT

In order to model transverse vibrations, we make so
simplifying assumptions about one of the pieces shortly a
the stick has been broken. First, we treat the half-stick as
isolated object of lengthL, subject to a vertical forceF at the
end where the blow was struck. The opposite end is at
wine glass and taken to be completely free. Bending mo
is modeled as that of two perfectly rigid rods connected b
spring mechanism that tends to keep the rods parallel.
shall assume small deviations from the initial position.
Let the two rigid rods have lengthL/2 and massM /2, and

let the bending-spring mechanism obey a generalization
Hooke’s law, with restoring torque proportional to the ang
of bending. Define the transverse coordinates for three po
on the half-broomstick byh1, h2, h3, as shown in Fig. 1. We
let F.0 represent an upward force, so that the applied fo
can be modeled as a negative impulse. Since the displ
ments are assumed small, the angles are approximated

a5
h12h2

L/2
, b5

h32h2

L/2
. ~1!

With three variables~h1,h2,h3!, we need three equations o
motion:

F5M S ḧ112ḧ21ḧ3

4 D , ~2a!

S L2DF5
1

3 SM2 D S L2D 2@ä2b̈#, ~2b!

1

3 SM2 D S L2D 2b̈52s~a1b!2
1

2

L

2

M

2
ḧ2 . ~2c!

The first equation~2a! is Newton’s second law for an ob
ject of massM , whose center-of-mass coordinates a
~h112h21h3!/4. The second equation~2b! is a torque equa-
tion about the center of mass of the entire system.~The
spring mechanism does not enter here because only ext
torques contribute.! The third equation~2c! describes rota-
tional motion of theunstruckrod about the pivot point con
necting the two rods. It contains two torquelike terms on
right-hand side~RHS!. The first term,2s~a1b!, is the
torque caused by the spring mechanism wheres is the gen-
eralized spring constant. The second term on the RHS of~2c!
is an inertial ‘‘pseudo-torque’’ proportion tod2h2/dt

2. To
understand this term, note that a pseudo-force of magni
ma5(M /2)a acts at the center of mass of the unstruck r
wherea is the acceleration of the pivot point. This ‘‘pseud
torque’’ can be used to shut a car door by carefully back
up, and then slamming on the brakes. It is analogous to
‘‘centrifugal force’’ and can be derived from Newton’s se
ond law as seen in an accelerating reference frame.8

While manipulation of these equations is tedious, they
linear, and can be simplified by a transformation of variab
from ~h1,h2,h3! to (B,R,T), where

B5h122h21h3 ,

R5h12h3 , ~3!

T5h112h21h3

are new variables designed to represent bending, rota
and translation of the center of mass, respectively. The lin
transformation back from (B,R,T) to ~h1,h2,h3! is easily
507 Am. J. Phys., Vol. 65, No. 6, June 1997
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obtained by finding the inverse of a 333 matrix, or by using
algebra.
Using the new (B,R,T) variables, the three equations o

motion are quite simple:

MB̈1
192s

L2
B512F, ~4a!

MR̈56F, ~4b!

MT̈54F. ~4c!

What makes the variables (B,R,T) special is that they
represent the three normal modes of the system. They
facilitate a derivation of~4! that does not require the
‘‘pseudo-torque.’’ From~3! and also~7! and~10! below, the
Lagrangian can be constructed from the potential ene
U52sB2/L22*Fdh3 , whereh3 as well as kinetic energy
K must be expressed in terms of the (B,R,T) variables. For
example, the kinetic energy takes on a simp
form, K5M [3Ṫ214Ṙ21Ḃ2]/96, where it is worth noting
that cross terms such asḂṘ are mercifully absent.
Regardless of whether we use a ‘‘pseudo-torque’’ or L

grangian formalism, Eq.~4! is easily solved if we let the
downward force be an impulse,F}2d(t), so thatR ~rota-
tion! and T ~translation! describe free particles, while th
variableB ~bending! acts like a simple harmonic oscillato
The impulse gives each variable (B,R,T) initial conditions.
After finding (B,R,T) for such an impulse, the variables a
converted back to~h1, h2, h3!. The result for the end nea
the wine glassh3(t) is

h35VAt2
3VA

2v
sin~vt !, ~5!

wherev5~192s!1/2L21 is the natural frequency of bendin
motion and the magnitude of the impulse force is defined
that VA is the time-averaged velocity of the unstruck en
Thush35VAt represents the motion up and away from t
wine glass which makes the demonstration work. The sm
angle approximations preclude modeling of rod rotation
yond this stage. The second term in~5! oscillates in time and
is associated with bending motion.
Equation~5! is used to ploth3(t) for realistic values ofv

andVA in Fig. 2. The value ofVA52.6 m/s was obtained
from Ref. 1, which contains a picture made from a videota
of the demonstration. From Fig. 3 of that reference, one s
that the stick rises approximately 4.3 cm during the first 1
of a second. To obtainv, we use the oscillation frequency o
the lowest-order mode~n51! of a free vibrating rod:2

v5nsbk
2>nsbS n11/2

L
p D 2, ~6!

where the radius of gyration,b5R/2'6.3 mm, for a cylinder
of radiusR. The lengthL of a typical half-broomstick is
taken to be 0.825 m.
Equation~6! is only an approximation. As seen from th

dispersion relation~11! below, there are four values of wav
numberk for a given frequencyv: two real and two imagi-
nary. The actual lowest-order wave function for a free rod
a superposition of cos(kx) and cosh(kx)5cos(ikx), with k
being selected to satisfy a boundary condition somew
more complicated than that associated with common st
waves.2

The speed of sound in wood is typically between 1300 a
4700 m/s, so we take an average value ofvs53000 m/s for
507Guy Vandegrift
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our calculation.9 This yieldsv'640 s21. From either Fig. 2
or Eq. ~5!, the maximum downward displacement of th
broomstick is 0.28VA/v'1 mm, with perhaps a factor of 2
uncertainty due to lack of knowledge of the sound speed
wood, and due to the fact that higher order modes are
cluded by the model.
We are now in a position to check our assumption that

broomstick was immediately broken by the blow. First, w
estimate the speed of the rod which strikes the blow. A ba
ball thrown at a speed of 14 m/s will travel 20 m, a distan
easily achieved with only an arm and wrist motion. Such
hand speed would be approximately doubled by the le
arm of a rod. I believe the rod speed is larger because
chopping motion is very comfortable for the arms and ba
and because the wrist is able to rotate the rod effectiv
Since the person doing the demonstration is in no mood
strike a light blow, it is reasonable to assume that the bro
ends of the broom at the center moved down more than
cm during the first millisecond.
It is interesting to compare other measurements with

estimate of rod speed~28 m/s!, which is twice the speed of a
baseball thrown without a wrist snap. Investigations of kar
blows indicate hand speeds of 5–10 m/s.10–13A lower bound
on the rod speed can be obtained from the observed 20
speed of a sledgehammer used to break the block in
‘‘Bed of Nails Demonstration.’’14

From Fig. 2, we see that the broomstick might be in
process of being broken when the downward motion occ
at the wine glasses. This confusion as to when the bro
stick breaks adds further uncertainty to the calculated va
of the downward displacement.

III. OBSERVATIONS WITH FORCE PROBE AND
MEASURING STICK

A related demonstration is simple to set up if one ha
force probe compatible with motion detectors often used
the teaching of introductory physics.7 It shows students tha
there is a brief downward force on the broomstick. And
shows that there will be a large and not very brief downw
motion onto the wine glasses in the event that the blow d
not break the broomstick.
The broomstick is replaced by a wooden ‘‘2-m’’ measu

ing stick made of hard wood~cross section 8325 mm!. A
light tap to the center of the measuring stick will excite
spectrum of bending modes. One end of the measuring s
is attached to the force probe which collects data conti
ously and is self-triggered in such a way as to record d
prior to experiencing any force above a threshold value
lectable by the user of the software.
From Fig. 3~a!, we see that the measuring stick is aga

pushing down after 20 ms. This can be attributed to
stick’s lowest-order mode, which undergoes approximate
quarter-cycle in Fig. 3~a!. The observed 240-ms period
consistent with a sound speed of 4600 m/s in the wo
provided we take the wavelength 2p/k to be 4 m. This
lowest-order mode is absent in both the mathematical mo
and the actual demonstration because the broomstick
been broken into two pieces before this low-frequency m
undergoes one cycle.
It is also worthwhile to let students shake the measur

stick and feel how low the fundamental frequency is. A sim
lar exercise is to hold a 12-in. ruler down near the edge o
table and see how the free end vibrates as one mak
508 Am. J. Phys., Vol. 65, No. 6, June 1997
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shorter. Frequency depends very strongly on wavelength
can be seen from the dispersion relation:v}k2

}~wavelength!22.

IV. DERIVATION OF WAVE EQUATION

The model used here can be extended to derive the w
equation for transverse bending modes. My derivation
similar to that of Crawford5 in that he treats the system as
large number of discrete and rigid elements connected
massless springs. However, Crawford’s derivation requ
an extra set of springs and motions not needed here. In
trast, the derivations found in most textbooks are difficult
grasp because they involve equations of motion for differ
tial elements.2

We consider a long chain ofN rigid rods of lengthl5L/N
and massm5M /N, each connected by a mechanism w
generalized spring constants. Neglecting a small error at the
first and last rods, the kinetic energyK is due to motion of
the center of mass, plus rotational motion:

K5
1

2
m(

j51

N S ḣ j1ḣ j11

2 D 21(
j51

N
1

2

ml2

12 S ḣ j2ḣ j11

l D 2.
~7!

Sinceuh j u'uh j11u!uh j2h j11u, we can drop the rotation
term and approximate the first term as

K'
1

2
m( S ḣ j1ḣ j11

2 D 2' m

2 ( ~ḣ j !
2

→
l

2 E @ḣ~s!#2ds, ~8!

where the last term is taken in the limit thatN→`, andl is
the mass density per unit length. The potential energy
found by observing that the difference between two adjac
rods is

Da5
h j212h j

l
2

h j2h j11

l
5

h j2122h j1h j11

l
, ~9!

so that

U5(
1

2
s~Da!25

s

2 ( S h j2122h j1h j11

l D 2
→

s l

2 E Fd2h~s!

ds2 G2ds. ~10!

At this point, there are three paths to a dispersion relat
or wave equation. The ‘‘quick and dirty’’ derivation does n
require knowledge of Lagrangian mechanics, but yields o
a dispersion relation. One simply notes that, for stand
waves,d2h/dt252v2h andd2h/ds252k2h. Also, a stand-
ing wave’s maximum potential and kinetic energy are equ
U5K, whereU is evaluated at maximumh ~when dh/dt
50! and K is evaluated at maximumdh/dt ~when h50!.
With the replacement of differential operators byv or k, the
dispersion relation follows from equating the integral form
~8! and ~10! for T andU, respectively, and noting that ev
erything factors out except

v25
s l

l
k4, ~11!

from which the wave equation,
508Guy Vandegrift
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]t2
5

s l

l

]4h

]s4
~12!

can be guessed or postulated, but not, in my view, rigorou
derived.
In the unlikely event that you find yourself doing th

demonstration to a physics class studying the last chapte
Goldstein,15 the most elegant way to derive the wave equ
tion is to note that the Lagrangian is expressed as an inte
of the Lagrangian density:L5*L(]h/]t,]2h/]s2)ds. A
slightly more pedestrian but equally rigorous derivation is
obtain finite difference equations from the Lagrangian,L5K
2U, as expressed by thesumsin ~8! and~10!. The algebra is
straightforward but tedious. Two key steps will illustrate t
method.15

]U

]hn
5

]

]hn
H s

2 (
j51

N S h j2122h j1h j11

l D 2J
5

]

]hn
$three terms in the sum%

5
s

2

]

]hn
H S hn2222hn211hn

l D 2
1S hn2122hn1hn11

l D 2
1S hn22hn211hn22

l D 2J ~13a!

and

lim
l→0

S hn1224hn1216hn1224hn121hn12

l 4 D5
]4h

]s4
.

~13b!

There is also a derivation of the wave equation that d
not use Lagrangian mechanics. While accessible to the w
est audience, this derivation is actually the most difficu
The forceF on a bending-spring mechanism can be cal
lated by making a virtual displacementdh of one mecha-
nism, keeping all other mechanisms motionless~but allowing
them to bend!. The energy of bending associated with th
displacement isFdh5(sdu j , where the sum,(, is over the
three mechanisms that bend when one mechanism mo
From Fig. 4, one obtains a downward restoring force
~u222u1u1!~s/1!, where u7 is the bending angle of the
mechanism to the~left/right!, andu is the bending angle o
the mechanism that moves. Since~u222u1u1!}]2u/]s2 and
u }]2h /]s2, we see thatF}]2h/]t2}2]4u/]s4. The wave
equation follows by assuming that all the mass is located
the bending mechanisms. What makes this derivation ‘‘
comfortable’’ is the fact that a displacement of one and o

Fig. 4. An upward virtual displacement of the central bending mechan
gives rise to a downward force. The bending angles going from left to r
are~u2 ,u,u1! and are defined so thatu50 for no bending, andu is negative,
while both u2 and u1 are positive. The anglesu2 and u1 change by an
amountdu5dh /l , andu changes by twice that amount.
509 Am. J. Phys., Vol. 65, No. 6, June 1997
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one spring mechanism is impossible for finitedh. The sim-
plest resolution of this problem is to allow the spring mech
nism added motion that allows for slight elongation of t
rods.
Our final task is to relate the idealized system of rigid ro

and massless springs to a physical rod consisting of mat
with Young’s modulusE, and mass densityr. Suppose a
very long rod is bent into a circle. Using the model of rig
rods, we haveN spring mechanisms, each bent by an an
of 2p/N, so that the potential energy is

U5N
s

2 S 2p

N D 2. ~14!

Next, we bend a physical rod into a large circle of radi
R5L/2p. Each atom of the rod is compressed or expand
by an amountDL, whereDL/L5x/R with x being the dis-
tance to the dotted line shown Fig. 5. The force of compr
sion at an element of surfaceda is E(DL/L)da, and
the energy required to attain this compression
(E/2L)(DL)2da. Integrating over a cross section of the ro
we have

U5
E

2 E ~DL !2

L
da5

E

2 S 4p2

L D E x2 da. ~15!

The mass density per unit lengthl, and mass density per un
volume are related byl5r*da. Using the equality of the
two forms of potential energy~14! and ~15!, one obtains

s l

l
5
E

r

*x2 da

*da
[
E

r
b2, ~16!

which defines the radius of gyration,b. Insertion of~16! into
~12! yields the usual wave equation for transverse bend
modes.
The location of the dotted line in Fig. 5 and hence t

origin of x has not been defined. This problem is easily re
edied by minimizing the potential energy required to be
the long rod into a circle. We must choosex0, the location of
the dotted line, so as to minimize the integral*(x2x0)

2da.
Setting to zero the derivative of this integral with respect
x0, we see that*xda5*x0da, so that*xda50 for a proper
choice of origin~x050!.

V. TRANSVERSE STRING WAVES

It is instructive to compare transverse bending waves i
rod with transverse tension waves on a string. The form

m
t

Fig. 5. Schematic drawing of a very long rod bent into a circle of radiusR.
The dotted circle represents matter neither compressed nor extended b
bending. Matter outside the dotted circle is extended while matter inside
dotted circle is compressed. The distance from the dotted line isx.
509Guy Vandegrift
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~8! for kinetic energyK is the same for both systems, but th
potential energy~10! U is different:U5tDL, wheret is the
tension andDL is the change in length of the string,

L1DL5E dl 5E Ads21dh2'E F11
1

2 S dh

dsD
2Gds,

~17!

where we have Taylor expanded the small term in the rad
sinceudsu!udhu for low amplitude waves. Thus, for a strin
wave’s potential energy,

U5
t

2 E S ]h

]s D
2

ds. ~18!

One might say that potential energy in the transverse wav
a string is stored as a change in string length, while energ
a transverse bending wave is stored in the bending, or
vature of the rod.
Comparison of~10! and~18! shows that the dependence

potential energy on wave number is much stronger for be
ing waves~U}k4! than for transverse string waves~U}k2!.
Students who have carried long boards or fishing rods m
have noticed that long objects seem far from rigid; lo
sticks feel ‘‘wobbly.’’ This lack of rigidity is closely related
to the low frequency of the fundamental mode. Both ar
from the low potential energy associated with the bending
very long objects.
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