The Mossbauer effect explained
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Direct integration of Schidinger’s equation yields the transition probability for the $dbauer

effect, assuming that the bound nucleus receives a sudden impulse of momentum from a gamma
particle. Generalization from two coupled oscillators to a linear chain introduces the discrete Fourier
transform, in real variables. This chain of coupled oscillators can be used to suggest how very low
order collective modes can remain unexcited by the impact.19@ American Association of Physics
Teachers.

I. INTRODUCTION large forceF, acting for a very short times. Since the force

R. L. Mossbauer was awarded the Nobel Prize for his'S large, we can neglect the kinetic energy in Sdmger's
1958 discovery of recoilless resonant nuclear absorption by §duation and integrate, noting that the potentialVis)

photon!~® A common example occurs whéfCo decays to = —XF,
'Fe, emitting a 14.4-keV gamma particle with remarkably oy B2 P2y
narrow linewidth, corresponding to an energy of 4.7 i% i —xFy— >m WRv,_)([:,ﬁ. (D

x 10" ® eV. Such a small change of energy is consistent with
a DOppler shift of Only 0.02 Cm/S, and is much smaller than|ntegration with respect to time y|e|ds

the recoil energy of X102 eV resulting from the absorp- _ ,

tion or emission of the photon by a free nucleus. ThéesMo P(x,7) = P(x,0)€'7¥ 7" = yo(x,00e™*, v
bauer effect is recoilless emission or absorption, in which the T _ o .
energy shift associated with recéx 102 eV in the case wherefik=F 7 is the applied impulse. It is interesting that

. _ —igx .
of 57Fe) is absent because the nucleus is bound by the latticdl€ Fourier transformy(q) =J4(x)e "*dx is converted
Here we present a simple derivation of how thedgloauer Into /(9= k) by the impulse, meaning that the wave function
effect' permits the absorption of a gamma ray without recoil.'S Bh'ﬂed |nhmomentl#m gpace by the appl;eﬂ m;}pulse. .
A free particle at rest acquird€k?/2m of kinetic energy if a enote the normalized energy states of the harmonic os-

force imparts an impulse of momentum equalite. If the cillator as u;(x), wherej is a non-negativg integer. By a
struck particle is a nucleus bound in a crystal lattice thefundamenta_l postulate of quantum mechan[cs, the prc_Jbablllty
' hat the collision leaves the wave function in gtk excited

momentum can be absorbed with no change in energy. Ho X ) ) ; ;
does this happen? Direct integration of Sdinger’'s equa- State is obtained by taking the inner productydi, 7) with
tion (with the kinetic energy term neglecteshows that the Uj(x). For example, if the particle is in the ground state prior
oscillator usually remains in the ground state wheneveto collision, theny(x,0)=ug(x). Thus

h2k?/2m<%w, wherefiw is the excitation energy of the os- )

cillator. This is intuitively reasonable: The oscillator is not pj:f uo(x)e‘kxuj*(x)dx (3)
excited if the energy required to reach the next quantum state

is larger than what might be called the “available kinetic s yo yronapility that the collision converts a ground state
energy” associated with an impulse. However, this leaves at

important question unanswered: Collectiyghonon modes hto the jth excited state. In the event thtp~1, we may
can have excitation energies much less thak?/2m. Why expand the exponential to obtain an approximate expression

are they not excited by the impulse? This can be answerefcg)r Pe=Po—1, the probability of putting the nucleus into

qualitatively by first using a familiar and intuitive change of one of the excited states:

variables to analyze two coupled oscillators. The discrete  p_=1— p~ 1k%(x?), (4)
real Fourier transform then allows generalization to a linear

chain of arbitrary length. While the assumption of a one-wherex is referenced to a point whefa)=0. Let o be the
dimensional linear chain yields results that differ from thespring constant, so that=(o/m)? is the oscillator’s fre-
three-dimensional case, this analysis yields an intuitive unquency. Noting that total energy,w/2, arises from equal
derstanding of how low order modes escape excitation by thegntributions of kinetic energgp2)/2m and potential energy

impact of a gamma ray on a nucleus. The Appendix pr_esent§<xz>/2' a more illuminating form folPg is obtained:
an alternative model in which the nucleus receives its impul-

sive via a collision with another particle, instead of via an K3(x?)  h%k?
impulse force “suddenly” applied &t=0. Pe~ 2 om

Il. SINGLE NUCLEUS (providedPg<1). Equation(5) has a simple interpretation:
A particle of massm suddenly receives an impulse of No transfer of energy from an impulse takes place if the
momentum#Ak at t=0. The impulse is modeled as a very energy required to reach the next eigenstéte, is larger

=%m hw (5)
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(@ M Let x; represent the particle that receives the impdilke
Sincedx;dx,=d¢&;dé&,, we can write the matrix element in

(0 (3) as

B\ NN [ 00 0 o,

Fig. 1. Coupled harmonic oscillators showife) N=2 and(b) N=5.

flﬂl(fl)emlgllﬂf(&l)dfl]

than the kinetic energys?k?/2m, acquired when a free par-
ticle at rest is subject to the impuldk.
_The reader may find it difficult to reconcile this simple \hore \ve have definel;=K,=k/ 2 so thatkx,=Ky&;
discussion of a “sudden” impulse with a collision involving YK Note thatk2+ K2— k2. This i il fh
a photon of very well-defined wavelength. By Heisenberg’s 282 Note thatky 2= K% ThiSIs a special case ot the
uncertainty principle, such a photon has a very long cohergeneral resglt for a one-dimensional chainNbtoupled os-
ence time, and cannot be made to strike the nucleus at tim@illators, SK¥=k?, to be discussed in Sec. IV. Note that the
t=0. Insight into this question is developed in the Appendix,“effective” impulse for each normal modéK;, is smaller
where an alternative means of applying the impulse to thé¢han the impulsefik, applied to a single atom. This is the
oscillator is presented. mechanism by which low energy modes avoid excitation by
the impulse: The “effective momentum” must be shared in
such a way that each normal mode gets a fraction of the
impulse.
The previous discussion explains why the nucleus does
not recoil against its nearest neighbors. But long wavelength
collective modes have very closely spaced energy leveldV. N COUPLED OSCILLATORS
How do they avoid excitation by the impulse? To investigate Th . h f variabléd i wall ial
this, we consider a chain of harmonic oscillators, coupled € prévious change of varia €8 is actually a specia
together as in Fig. 1. The cadé=2 is modeled by Schit case of the discrete I_:ourler transform férreal varlables,
inger's equation for two variables: which also transform into the normal mode coordinatgs,
associated with classical physics:
= h(X1,X2),

X

f '/lz(fz)eiKzgzlﬁ;(fz)dfz], 9

[ll. TWO COUPLED OSCILLATORS

02 (5 5 (6) 2 % £ si jmn
0y - Y Y o, Xn= NTTL- J-sm—N ,
A — =1 +1
% 5= 2m (ﬁle * ax22)+ 2 *a¥ IN (10
2 z [ jmn
g g .= PR — .
+5 080 5 am ). OTVREL S N

Herexy andxy ., are not quantum variables, but are simply

The change of variables, defined as zero, establishing boundary conditions for the nor-

X1+ Xo X1—Xo mal modes. The inverse transform is verified using
§ = 1 = 1 (7) .
Y 2 V2 N _(]Wn _(kwn N+15
sin sin = s

is known to “decouple” two coupled pendulums in the clas- /=1 N+1 N+1 2 11
sical case. Using identities such ag2d/dx,=dld&; N )
+4d/d&,, this converts Schiinger's equation into a simpler 2 sinl J7n co{ kan —
(i.e., separableform: =1 N+1 N+1

op_ Ry —hPPY o, 02 Other useful identities areSx;=3& and 2d%x;

gt 2m g9&2 " 2m g&2 " 2 Gt 5 &b =30% 3£ The latter is obtained using the chain rule of

(8)  multivariable calculus:
whereo;=0 ando,=30. d N 9& o 1 % [ nmjp\ 9
From(8), we see that in these “normal mode&'variables, - = —~ - VnNI7. sin pyal

Schralinger's equation separates into two independent har- P {1 OXn I N+15= N+1/ ¢,
monic oscillator equations, allowing us to wrigeas a prod- Schralinger’s equation,
uct 1(&1) ¥o(€,). While these decoupled oscillators don't 5 N o N
really exist in a physical sense, they exist mathematically. ;2 ‘9_‘/’: —h ‘?_’f”+ g E (X=X )20 (12)
And mathematically speaking, we shall see that each decou- gt 2m =1 oxs o T Tt
pled oscillator independently receives its share of “effectiveb bl fi
impulse” as a single nucleus is struck. This “effective im- ecomes a separable equation,
pulse” is not momentum in the sense of mass times velocity. ap  —h? N Py 1 N
The choice of the’2 in (7) is arbitrary, but deliberately cho- ih = om & (9_52+ > > o §j21//, (13
sen in order that the “mass” of these normal mode oscilla- n=roe n=0
tors equals the mass of the particles, where the effective spring constant for each mode is
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: (14

0'j=20

1 —j 7
O N+1
Next we rewrite the term exji,) by direct substitution

for x, (1<=p=<N) where p labels the single nucleus that
absorbs the impuls&k:

N .
. . 2 [ JTp Fig. 2. Sketch of geometry for a model of two colliding particles in one
eXIiIkOXp) = eXF{ 'ko[ \V N+1 121 gJ’ sin N+1 } dimension. The particles are “hard” in that they do not pass through each
other.
N
=TI expiK;¢), (15)
=1 APPENDIX: ALTERNATIVE MODEL FOR A

where the “effective” momentum received by théh nor- “SUDDEN" IMPULSE

mal mode, The calculation of Sec. Il forces the reader to imagine that
2 jmp a photon c_Jf k_nown_ momentum i_s mr_:\de to stri_ke the nucleus

hKJ:{ \ /m sin NET fiko, (16)  at a certain time, in apparent violation of Heisenberg’s un-
certainty principle, as applied to the photon’s wavelength

is typically smaller tharfik by a factor/N. Definefw; as and position. We shall refer to this calculation (@ as the
the characteristic energy of thjéh mode. Taylor expanding sudden” approximation. In this section, we model the in-

14) for low order modes j(<N) yields w;~] ww/N, where ~COMINg gamma ray as a free quantum particle striking a
;La)):ﬁ(()'/m)llz is the cjrgaraitgristic énejrgy of a single bound quantum particle. While the free particle is treated

. . ; nonrelativistically, it is represented by a plane wave with
mass—spring system described in Sec. l. UsB)gthe prob- exact momentum and unknown position. In this section, we
ability of exciting a low order mode is

will obtain an equation that looks likg), in spite of the fact
ﬁzK?/ 1 that we do not know when the collision takes place.
how~
j

Pe(j)~ ij I Pe, 17 Consider a system that is strictly one dimensional, with

the two particles being unable to pass through each other.
wherePg is the probability for a single mass—spring systemThe situation is similar to the case of two carts on an air
given by (5), and we have assumed bgt&N andPg<1. track, as sketched in Fig. 2. To make an analogy with a
Equation (17) explains how very low energy phonons two-dimensional scattering problem, we denote the free par-
might escape excitation by an impulse applied to a singldicle of massm by the coordinate §,” and the bound par-
atom. But it does not explain how all the phonons escapéicle of massM by the coordinate X.” As is the case of a
excitation. In fact,(17) predicts that the Mssbauer effect particle in an infinite square well, we demand thgix,y)
does not happen because after summing over all lower ordet g aty=x. The Hamiltonian fory<x is
modes, we find that

1 1 1 1 He— ———— = -+ 3 X2 19
155+ =N (18 2m ay® 2M gx* = 2 19
max The lines of constant potential for this system can be repre-
for somen;,<N. sented in Fig. 3, where both particles are described by a

This logarithmic divergence is relatively wedthe loga-  single wave function that obeys a wave equation with prop-
rithm of a large number is not very largdn three dimen-  erties similar to that of Schdinger's equation. The y”
sions, the sum does not diverge. One reason is that low order
modes occupy a smaller amount of phase space in three di-
mensions. The density of modes in three dimensions is
g(q)=qg?, while it is independent of in one dimensioriq is
the phonon wave numbeiSuppose that the one-dimensional
chain of this calculation were actually imbedded in a three- infinite |
dimensional crystal, with the applied impulse being parallel barrier
to the chain. The shear forces between atoms would excite
normal modes other than those calculated in this paper. This
would certainly dilute the “effective” momentum applied to
each normal mode. Thus we know tha¥) and (18) repre-

(y=x)

——mX

sent an over-estimate of the probability of energy transfer. ce;r‘:;(ﬁfc
For another discussion of three versus one-dimensional crys- Evell

tals, see Ref. 4.

wavefunction
before
collision
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particle is incident(free), and sketched in the figure as a Henceforth we carry this approximation to the limit, so
wave packet just about to impinge on the bourx!’‘par-  that Ak=0 in (23), causing the matriM; to become the
ticle, located ayy=0. The absence of node lines in th&™*  Kroniker (identity) matrix &,;. The wave function becomes,
direction indicates that the oscillator is in the ground staten this limit:

before the collision. After colliding, the wave packet will o

reverse direction, having suffered disruptions at the slanted _ , B 2ik

potential barrier that cause ripples to appear inxhdirec- #(X,y) = Up(x)explikoy) nZ,O [n){n[e“*|0)

tion, representing the fact that the post-collision oscillator )

has a finite probability of being excited. xXexp(—ikyy), (29

We shall now seek coefficien6; such that where we have used Dirac notation,
tﬂ(x,y)=uc(><)e><|0(ikoy)+jzO Cju;(x)exp —ik;y) <n|e2“‘0|0>=f Un(x)e'2ko*uy(x)dx. (26)
(20)

Equation(25) expresses the idea 8) in a slightly different
matches the boundary conditign=0 atx=y. The firstterm form: Instead of the “final state” of the sudden approxima-
in (20) is the ingoing wave, and the sum represents outgoingion leading to(3), we have an outgoing wave. The use of
waves, withu,(x) being normalized oscillator wave func- Dirac notation puts the completeness of harmonic oscillator
tions. Definingw= (¢/M)*? andj as the harmonic oscillator wave functions, ¢(x) =2{fu,(s) ¢(s)ds}un(x), into the
quantum number, we have the condition that the momenta ainforgettable formg)=|n){n| ), so that the energy eigen-

outgoing waves obey state becomes:
£l Zﬁ_z 4+ 120, 21 $(X,Y) = Uo(x) exiiKoy) — eXpl 2ikox) Ug(X)
m x exp(—ikoy). (27)

This ensures thaf20) represents an energy eigenstate with
some arbitrary energk. To find C; (for j=0,1,2,..) we set
y=Xx (demanding that/ vanish therg and multiply (20) by

It is instructive to inspect27) for comparison with the
derivation of(2), which was based on a sudden impulse on a
single particle. In(27), the extra factor of 2 in exp{®X)

un(x)exp(k) and integrate ovex: arises from the fact that the incoming particle imparts twice
o0 the impulse as it rebounds. The negative sign before the sec-
ozf Uo(x) €' ot knXy (x)dx+ 2 MniCj . (22) ond term on the right-hand side arises from the inversion of
j=0 the incoming particle’s wave function at the barrier as
where exp(koy) converts to—exp(—ikgy) after the collision.

Perhaps the most fascinating difference betweh and
M. = | u.(x)ecn=kdxy (x dx=f u-(0)e 8%y (x)dx (2) is the need to make the approximatiovM <1 in order
" j ) Y0 n(X) i) to obtain (27). One might have thought that any collision
(23 between two “hard” particles produces the “sudden” pre-
and we have definedk=|k,—k;|. The sign convention is Scfiption(2) for transforming the wave function. This is ap-
that k; is always positive, so JthaAk=0 corresponds to parently not the case. One complication is the possibility of

equal but opposite momenta for the incoming and outgoingnultiPle collisions when the caskl~m is treated“classi— )
free particle channels. cally. A more important question is whether a “sudden

At this point, we need to make the approximation that theMPact can occur between guantum particles with small rela-
incoming (free) particle is very fast and very light, corre- tive velocity. Fortunately, in the Mssbauer effect, the as-
sponding to the limit that/M vanishes. As is well known sumptionm/M <1 seems reasonable because the collision is
from non-quantum mechanics, a very light particle suffers?®tween a photon and a nucleus.
little change in speed from a collision with a slow-moving
heavy particle. This approximation causes the matiy to
become the Kronikefidentity) matrix 5,;. A rigorous math-  'R. L. Massbauer, “Nuclear resonance fluorescence Hi'lfor gamma
ematical justification for this claim starts witR1): Since all rays,” Z. Physik151, 124 (1958.
transition channels are associated with the same net energip: A. O'Connor, “The Massbauer effect introduction,” Phys. BuRl,

; lale | 246-247(1970.
E, one can relaté\k to the change in the bound particle’s F. Yang and J. H. HamiltonModern Atomic and Nuclear Physics

energy, denoted aSE,=%w|n—j: (McGraw~—Hill, New York, 1996, pp. 467—469.
A Ak L. Eyges, “Physics of the Mssbauer effect,” Am. J. Phy§3, 790-802
E ~2— (24) (1965.
E; k'’ 5J. Hesse, “Simple arrangement for educationakktmuer effect measure-

. . ments,” Am. J. Phys41, 127-128(1973.
wherek; = f2k?/2m is the energy of the free particlg; can 8F. Ninio, “The forced harmonic oscillator and the zero phonon transition
be made arbitrarily large by a sufficiently small choice of of the Massbauer effect,” Am. J. Phyd1, 648—-649(1973.
m/M, so thatAk can be made arbitrarily small for a given R. A. Ferrell, “Forced harmonic oscillator in the interaction picture,” Am.

.. . . J. Phys 45, 468—-469(1977).
value ofk. By (24)’ this |mpI|es that the energy of the in- 5p. A. DeYoung, P. L. Jolivette, and N. Rouze, “Experimental verification

cpming free particle m_USt greatly exceed the available ener-of the Heisenberg uncertainty principle—An advanced undergraduate
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