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Direct integration of Schro¨dinger’s equation yields the transition probability for the Mo¨ssbauer
effect, assuming that the bound nucleus receives a sudden impulse of momentum from a gamma
particle. Generalization from two coupled oscillators to a linear chain introduces the discrete Fourier
transform, in real variables. This chain of coupled oscillators can be used to suggest how very low
order collective modes can remain unexcited by the impact. ©1998 American Association of Physics
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I. INTRODUCTION

R. L. Mössbauer was awarded the Nobel Prize for
1958 discovery of recoilless resonant nuclear absorption
photon.1–8 A common example occurs when57Co decays to
57Fe, emitting a 14.4-keV gamma particle with remarkab
narrow linewidth, corresponding to an energy of 4
31029 eV. Such a small change of energy is consistent w
a Doppler shift of only 0.02 cm/s, and is much smaller th
the recoil energy of 231023 eV resulting from the absorp
tion or emission of the photon by a free nucleus. The Mo¨ss-
bauer effect is recoilless emission or absorption, in which
energy shift associated with recoil~231023 eV in the case
of 57Fe! is absent because the nucleus is bound by the lat

Here we present a simple derivation of how the Mo¨ssbauer
effect4 permits the absorption of a gamma ray without reco
A free particle at rest acquires\2k2/2m of kinetic energy if a
force imparts an impulse of momentum equal to\k. If the
struck particle is a nucleus bound in a crystal lattice,
momentum can be absorbed with no change in energy. H
does this happen? Direct integration of Schro¨dinger’s equa-
tion ~with the kinetic energy term neglected! shows that the
oscillator usually remains in the ground state whene
\2k2/2m!\v, where\v is the excitation energy of the os
cillator. This is intuitively reasonable: The oscillator is n
excited if the energy required to reach the next quantum s
is larger than what might be called the ‘‘available kine
energy’’ associated with an impulse. However, this leaves
important question unanswered: Collective~phonon! modes
can have excitation energies much less than\2k2/2m. Why
are they not excited by the impulse? This can be answe
qualitatively by first using a familiar and intuitive change
variables to analyze two coupled oscillators. The discr
real Fourier transform then allows generalization to a lin
chain of arbitrary length. While the assumption of a on
dimensional linear chain yields results that differ from t
three-dimensional case, this analysis yields an intuitive
derstanding of how low order modes escape excitation by
impact of a gamma ray on a nucleus. The Appendix pres
an alternative model in which the nucleus receives its imp
sive via a collision with another particle, instead of via
impulse force ‘‘suddenly’’ applied att50.

II. SINGLE NUCLEUS

A particle of massm suddenly receives an impulse o
momentum\k at t50. The impulse is modeled as a ve
593 Am. J. Phys.66 ~7!, July 1998
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large force,F, acting for a very short time,t. Since the force
is large, we can neglect the kinetic energy in Schro¨dinger’s
equation and integrate, noting that the potential isV(x)
52xF,

i\
]c

]t
52xFc2

\2

2m

]2c

]x2 '2xFc. ~1!

Integration with respect to time yields

c~x,t!5c~x,0!eiFxt/\5c~x,0!eikx, ~2!

where\k5Ft is the applied impulse. It is interesting tha
the Fourier transformc(q)5*c(x)e2 iqxdx is converted
into c(q2k) by the impulse, meaning that the wave functio
is shifted in momentum space by the applied impulse.

Denote the normalized energy states of the harmonic
cillator as uj (x), where j is a non-negative integer. By
fundamental postulate of quantum mechanics, the probab
that the collision leaves the wave function in thej th excited
state is obtained by taking the inner product ofc(x,t) with
uj (x). For example, if the particle is in the ground state pr
to collision, thenc(x,0)5u0(x). Thus

Pj5U E u0~x!eikxuj* ~x!dxU2

~3!

is the probability that the collision converts a ground st
into the j th excited state. In the event thatP0'1, we may
expand the exponential to obtain an approximate expres
for PE5P021, the probability of putting the nucleus int
one of the excited states:

PE512P0' 1
2k

2^x2&, ~4!

wherex is referenced to a point where^x&50. Let s be the
spring constant, so thatv5(s/m)1/2 is the oscillator’s fre-
quency. Noting that total energy,\v/2, arises from equa
contributions of kinetic energŷp2&/2m and potential energy
s^x2&/2, a more illuminating form forPE is obtained:

PE'
k2^x2&

2
5

\2k2

2m Y \v ~5!

~providedPE!1!. Equation~5! has a simple interpretation
No transfer of energy from an impulse takes place if t
energy required to reach the next eigenstate,\v, is larger
593© 1998 American Association of Physics Teachers
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than the kinetic energy,\2k2/2m, acquired when a free par
ticle at rest is subject to the impulse\k.

The reader may find it difficult to reconcile this simp
discussion of a ‘‘sudden’’ impulse with a collision involvin
a photon of very well-defined wavelength. By Heisenber
uncertainty principle, such a photon has a very long coh
ence time, and cannot be made to strike the nucleus at
t50. Insight into this question is developed in the Append
where an alternative means of applying the impulse to
oscillator is presented.

III. TWO COUPLED OSCILLATORS

The previous discussion explains why the nucleus d
not recoil against its nearest neighbors. But long wavelen
collective modes have very closely spaced energy lev
How do they avoid excitation by the impulse? To investig
this, we consider a chain of harmonic oscillators, coup
together as in Fig. 1. The caseN52 is modeled by Schro¨d-
inger’s equation for two variables:

c5c~x1 ,x2!,
~6!

i\
]c

]t
5

2\2

2m S ]2c

]x1
2 1

]2c

]x2
2 D 1

s

2
x1

2c

1
s

2
x2

2c1
s

2
~x12x2!2c.

The change of variables,

j15
x11x2

&

, j25
x12x2

&

, ~7!

is known to ‘‘decouple’’ two coupled pendulums in the cla
sical case. Using identities such asA2]/]x15]/]j1

1]/]j2 , this converts Schro¨dinger’s equation into a simple
~i.e., separable! form:

i\
]c

]t
5

2\2

2m

]2c

]j1
2 1

2\2

2m

]2c

]j2
2 1

s1

2
j1

2c1
s2

2
j2

2c,

~8!

wheres15s ands253s.
From~8!, we see that in these ‘‘normal mode’’j variables,

Schrödinger’s equation separates into two independent h
monic oscillator equations, allowing us to writec as a prod-
uct c1(j1)c2(j2). While these decoupled oscillators don
really exist in a physical sense, they exist mathematica
And mathematically speaking, we shall see that each de
pled oscillator independently receives its share of ‘‘effect
impulse’’ as a single nucleus is struck. This ‘‘effective im
pulse’’ is not momentum in the sense of mass times veloc
The choice of theA2 in ~7! is arbitrary, but deliberately cho
sen in order that the ‘‘mass’’ of these normal mode osci
tors equals the mass of the particles,m.

Fig. 1. Coupled harmonic oscillators showing~a! N52 and~b! N55.
594 Am. J. Phys., Vol. 66, No. 7, July 1998
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Let x1 represent the particle that receives the impulse\k.
Sincedx1dx25dj1dj2 , we can write the matrix element in
~3! as

E c~x1 ,x2!eikx1c* ~x1 ,x2!dx1dx2

5 H E c1~j1!eiK 1j1c1* ~j1!dj1J
3 H E c2~j2!eiK 2j2c2* ~j2!dj2J , ~9!

where we have definedK15K25k/A2 so thatkx15K1j1

1K2j2 . Note thatK1
21K2

25k2. This is a special case of th
general result for a one-dimensional chain ofN coupled os-
cillators,(K j

25k2, to be discussed in Sec. IV. Note that th
‘‘effective’’ impulse for each normal mode,\K j , is smaller
than the impulse,\k, applied to a single atom. This is th
mechanism by which low energy modes avoid excitation
the impulse: The ‘‘effective momentum’’ must be shared
such a way that each normal mode gets a fraction of
impulse.

IV. N COUPLED OSCILLATORS

The previous change of variables~7! is actually a special
case of the discrete Fourier transform forN real variables,
which also transform into the normal mode coordinates,j i ,
associated with classical physics:

xn5A 2

N11 (
j 51

N

j j sinS j pn

N11D ,

~10!

j j5A 2

N11 (
j 51

N

xn sinS j pn

N11D .

Herex0 andxN11 are not quantum variables, but are simp
defined as zero, establishing boundary conditions for the n
mal modes. The inverse transform is verified using

(
j 51

N

sinS j pn

N11D sinS kpn

N11D5
N11

2
d jk ,

~11!

(
j 51

N

sinS j pn

N11D cosS kpn

N11D50.

Other useful identities are(xn
25(j j

2 and (]2/]xn
2

5(]2/]j j
2. The latter is obtained using the chain rule

multivariable calculus:

]

]xn
5(

j 51

N
]j j

]xn

]

]j j
5A 1

N11 (
j 51

N

sinS np j

N11D ]

]j j
.

Schrödinger’s equation,

i\
]c

]t
5

2\2

2m (
n51

N
]2c

]xn
2 1

s

2 (
n50

N

~xn2xn11!2c ~12!

becomes a separable equation,

i\
]c

]t
5

2\2

2m (
n5 j

N
]2c

]j j
2 1

1

2 (
n50

N

s jj j
2c, ~13!

where the effective spring constant for each mode is
594G. Vandegrift and B. Fultz
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s j52sF12cosS j p

N11D G . ~14!

Next we rewrite the term exp(ikxp) by direct substitution
for xp (1<p<N) where p labels the single nucleus tha
absorbs the impulse\k:

exp~ ik0xp!5expS ik0HA 2

N11 (
j 51

N

j j sinS j pp

N11D J D
5)

j 51

N

exp~ iK jj j !, ~15!

where the ‘‘effective’’ momentum received by thej th nor-
mal mode,

\K j5HA 2

N11
sinS j pp

N11D J \k0 , ~16!

is typically smaller than\k by a factorAN. Define\v j as
the characteristic energy of thej th mode. Taylor expanding
~14! for low order modes (j !N) yields v j' j pv/N, where
\v5\(s/m)1/2 is the characteristic energy of a sing
mass–spring system described in Sec. II. Using~5!, the prob-
ability of exciting a low order mode is

PE~ j !'
\2K j

2

2m Y \v j'
1

j p
PE , ~17!

wherePE is the probability for a single mass–spring syste
given by ~5!, and we have assumed bothj !N andPE!1.

Equation ~17! explains how very low energy phonon
might escape excitation by an impulse applied to a sin
atom. But it does not explain how all the phonons esc
excitation. In fact,~17! predicts that the Mo¨ssbauer effect
does not happen because after summing over all lower o
modes, we find that

1

1
1

1

2
1

1

3
1¯

1

nmax
' ln~nmax! ~18!

for somenmax,N.
This logarithmic divergence is relatively weak~the loga-

rithm of a large number is not very large!. In three dimen-
sions, the sum does not diverge. One reason is that low o
modes occupy a smaller amount of phase space in thre
mensions. The density of modes in three dimensions
g(q)}q2, while it is independent ofq in one dimension~q is
the phonon wave number!. Suppose that the one-dimension
chain of this calculation were actually imbedded in a thr
dimensional crystal, with the applied impulse being para
to the chain. The shear forces between atoms would ex
normal modes other than those calculated in this paper.
would certainly dilute the ‘‘effective’’ momentum applied t
each normal mode. Thus we know that~17! and ~18! repre-
sent an over-estimate of the probability of energy trans
For another discussion of three versus one-dimensional c
tals, see Ref. 4.
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APPENDIX: ALTERNATIVE MODEL FOR A
‘‘SUDDEN’’ IMPULSE

The calculation of Sec. II forces the reader to imagine t
a photon of known momentum is made to strike the nucl
at a certain time, in apparent violation of Heisenberg’s u
certainty principle, as applied to the photon’s waveleng
and position. We shall refer to this calculation of~2! as the
‘‘sudden’’ approximation. In this section, we model the i
coming gamma ray as a free quantum particle striking
bound quantum particle. While the free particle is trea
nonrelativistically, it is represented by a plane wave w
exact momentum and unknown position. In this section,
will obtain an equation that looks like~2!, in spite of the fact
that we do not know when the collision takes place.

Consider a system that is strictly one dimensional, w
the two particles being unable to pass through each ot
The situation is similar to the case of two carts on an
track, as sketched in Fig. 2. To make an analogy with
two-dimensional scattering problem, we denote the free p
ticle of massm by the coordinate ‘‘y, ’’ and the bound par-
ticle of massM by the coordinate ‘‘x. ’’ As is the case of a
particle in an infinite square well, we demand thatc(x,y)
50 at y5x. The Hamiltonian fory,x is

H52
\2

2m

]2

]y22
\2

2M

]2

]x2 1
s

2
x2. ~19!

The lines of constant potential for this system can be rep
sented in Fig. 3, where both particles are described b
single wave function that obeys a wave equation with pr
erties similar to that of Schro¨dinger’s equation. The ‘‘y’’

Fig. 2. Sketch of geometry for a model of two colliding particles in o
dimension. The particles are ‘‘hard’’ in that they do not pass through e
other.

Fig. 3. Two-dimensional analog associated with the two-particle o
dimensional problem. The lines are equipotentials of potential. The infi
force preventing the incoming particle from passing the bound particl
actually represented by closely spaced lines.
595G. Vandegrift and B. Fultz
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particle is incident~free!, and sketched in the figure as
wave packet just about to impinge on the bound ‘‘x’’ par-
ticle, located aty50. The absence of node lines in the ‘‘x’’
direction indicates that the oscillator is in the ground st
before the collision. After colliding, the wave packet w
reverse direction, having suffered disruptions at the slan
potential barrier that cause ripples to appear in thex direc-
tion, representing the fact that the post-collision oscilla
has a finite probability of being excited.

We shall now seek coefficientsCj such that

c~x,y!5u0~x!exp~ ik0y!1(
j 50

`

Cjuj~x!exp~2 ik jy!

~20!

matches the boundary conditionc50 atx5y. The first term
in ~20! is the ingoing wave, and the sum represents outgo
waves, withun(x) being normalized oscillator wave func
tions. Definingv5(s/M )1/2 and j as the harmonic oscillato
quantum number, we have the condition that the moment
outgoing waves obey

E5
\2

2m
kj

21~ j 11/2!\v. ~21!

This ensures that~20! represents an energy eigenstate w
some arbitrary energyE. To find Cj ~for j 50,1,2,...! we set
y5x ~demanding thatc vanish there!, and multiply~20! by
un(x)exp(iknx) and integrate overx:

05E u0~x!ei ~k01kn!xun~x!dx1(
j 50

`

Mn jCj , ~22!

where

Mn j5E un~x!ei ~kn2kj !xuj~x!dx5E un~x!eiDkxuj~x!dx

~23!

and we have definedDk5ukn2kj u. The sign convention is
that kj is always positive, so thatDk50 corresponds to
equal but opposite momenta for the incoming and outgo
free particle channels.

At this point, we need to make the approximation that
incoming ~free! particle is very fast and very light, corre
sponding to the limit thatm/M vanishes. As is well known
from non-quantum mechanics, a very light particle suff
little change in speed from a collision with a slow-movin
heavy particle. This approximation causes the matrixMn j to
become the Kroniker~identity! matrix dn j . A rigorous math-
ematical justification for this claim starts with~21!: Since all
transition channels are associated with the same net en
E, one can relateDk to the change in the bound particle
energy, denoted asDEb5\vun2 j u:

DEb

Ef
'2

Dk

k
, ~24!

whereEf5\2k2/2m is the energy of the free particle.Ef can
be made arbitrarily large by a sufficiently small choice
m/M , so thatDk can be made arbitrarily small for a give
value of k. By ~24!, this implies that the energy of the in
coming free particle must greatly exceed the available e
gies of the bound particle (Ef@DEb).
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Henceforth we carry this approximation to the limit, s
that Dk50 in ~23!, causing the matrixMn j to become the
Kroniker ~identity! matrix dn j . The wave function becomes
in this limit:

c~x,y!5u0~x!exp~ ik0y!2 (
n50

`

un&^nue2iku0&

3exp~2 ikny!, ~25!

where we have used Dirac notation,

^nue2ik0u0&5E un~x!ei2k0xu0~x!dx. ~26!

Equation~25! expresses the idea of~3! in a slightly different
form: Instead of the ‘‘final state’’ of the sudden approxim
tion leading to~3!, we have an outgoing wave. The use
Dirac notation puts the completeness of harmonic oscilla
wave functions,f(x)5S$*un(s)f(s)ds%un(x), into the
unforgettable form,f&5un&^nuf&, so that the energy eigen
state becomes:

c~x,y!5u0~x!exp~ ik0y!2exp~2ik0x!u0~x!

3exp~2 ik0y!. ~27!

It is instructive to inspect~27! for comparison with the
derivation of~2!, which was based on a sudden impulse o
single particle. In~27!, the extra factor of 2 in exp(2ik0x)
arises from the fact that the incoming particle imparts tw
the impulse as it rebounds. The negative sign before the
ond term on the right-hand side arises from the inversion
the incoming particle’s wave function at the barrier
exp(ik0y) converts to2exp(2ik0y) after the collision.

Perhaps the most fascinating difference between~27! and
~2! is the need to make the approximationm/M!1 in order
to obtain ~27!. One might have thought that any collisio
between two ‘‘hard’’ particles produces the ‘‘sudden’’ pr
scription ~2! for transforming the wave function. This is ap
parently not the case. One complication is the possibility
multiple collisions when the caseM'm is treated classi-
cally. A more important question is whether a ‘‘sudden
impact can occur between quantum particles with small re
tive velocity. Fortunately, in the Mo¨ssbauer effect, the as
sumptionm/M!1 seems reasonable because the collisio
between a photon and a nucleus.
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