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The fluctuating pressure inside a violin is investigated at theA0 ~main air! resonance, under the
assumption that the walls are kept rigid. Three effects are shown to contribute to a reduction in the
fluctuating pressure near the violin’s f-holes. The strongest effect arises from a tendency to form a
standing wave within the relatively long, thin shape of the upper bout. A second and smaller effect
arises from the violin’s nonuniform shape, and is modeled by treating the upper bout as an
acoustical waveguide with nonuniform cross section. A third effect is associated with the Green’s
function of an acoustical radiator, and will significantly reduce the fluctuating pressure in the
immediate vicinity of the violin’s f-hole. Experimental verification of the theory is obtained by
measuring the fluctuating pressure inside a rectangular box, with the resonance being driven by a
small loudspeaker located outside the aperture. ©1997 Acoustical Society of America.
@S0001-4966~97!06107-9#
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INTRODUCTION

The violin’s main air resonance (A0 mode! strongly re-
sembles a Helmholtz resonator, which is characterized b
small aperture and uniform fluctuating pressure through
the chamber.1–5 However, the upper bout of the violin i
sufficiently long and thin, and the f-hole sufficiently larg
that the A0 mode also somewhat resembles the qua
wavelength mode of an open-ended resonator.2,3,6,7 Other
complications are:

~1! the violin’s nonuniform shape;6–9

~2! the aperture acting as an acoustical radiator;10,11

~3! the flexibility of the walls ~i.e., coupling to wood
modes!.5

This paper investigates the inhomogeneity in fluctuat
pressure inside the violin at theA0 mode, under the simpli
fying assumption that the walls are rigid. However, the co
clusions are relevant to the fact that the plates of a violin
flex. Cremer5 describes a linear model that treats the violin
two or more rigid plates held by spring mechanisms. The
near an f-hole is treated simply as another mass with
associated spring constant caused by the compressibilit
air.4 The equations in this model resemble those of a disc
set of masses linked by harmonic springs. In its simp
version, only two masses are considered: one wall
moves as a piston, and one mass of air localized to a re
near the f-hole. This yields two modes: the air (A0) mode,
and a ‘‘wood’’ mode, taken to represent theT1 mode,12–15

higher in frequency by a factor of approximately 1.5. Co
pling between air and wood motion is shown5 to lower the
frequency of the air modev0 to a value perhaps 5%–7%
lower than the classical Helmholtz frequencyvH @i.e., vH

'c(L f /VT)
1/2, wherec is the speed of sound,VT is the total
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volume of the violin, andL f is the sum of the lengths of th
two f-holes4#.

Measurements of the violin’s bridge admittanc
uv(v)/F(v)u, exhibit several dips and peaks as the fr
quencyv is varied.5,14,15 Cramer’s simple two-mass mode
suggests an explanation for this as it predicts a bridge ad
tance which diverges atv5vO and vanishes atv5vH .
~Note thatvO is the resonant frequency of the air mode af
it has been shifted away from the ‘‘Helmholtz’’ frequenc
vH by wood-coupling effects. For the sake of simplicity, th
two-mass model justifiably neglects any frequency shifts d
to complications in air motion described later in this pape!

Cremer refers to the region on the upper plate betw
the f-holes as the ‘‘island,’’ and argues that it plays an i
portant role in the coupling of air and wood motion. Th
coupling depends on the mass and stiffness of the wood
well as on the fluctuating air pressure, especially at locati
of maximum plate motion. Holographic studies of the vi
lin’s motion at theT1 mode indicate that motion is indee
large near the f-holes, although not so large that the r
tively small ‘‘island’’ completely dominates the productio
of sound.5 In a demonstration not recommended on a go
violin, one can see the wood flex and hear a change in t
by pressing hard on the instrument near the f-hole. While
change in tone may be due to changes in harmonics hig
than the frequencies of interest, it suggests that the ma
tude of fluctuating air pressure at the f-holes might be i
portant. While not all investigations of pressure inside t
violin at theA0 resonance have reported a reduction of pr
sure near the f-holes, our analysis clearly predicts that su
reduction should exist.8,15

A completely uniform fluctuating pressure is associa
with an ideal Helmholtz resonator and occurs if the f-hole
sufficiently small. This can be understood as follows: If t
size of the cavity,L, is kept constant, then a reduction
622(1)/622/6/$10.00 © 1997 Acoustical Society of America
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aperture size reduces the resonance frequencyv5k/c to the
pint wherekL!1, so that a sound wave would transit th
cavity in a time much less than a period of oscillation. Th
the air comes to a sort of mechanical equilibrium with
spect to sound vibrations at very low frequencies. Shaw8 has
modeled theA0 mode using acoustical impedances and c
cluded from both calculations and measurements that
pressure in the upper bout is 30%–40% higher than in
lower bout. This is due to inductances~kinetic energy of air!
not associated with the f-holes. In a classical Helmholtz re
nator, all the acoustical inductance is at the aperture, w
the cavity provides all the acoustical capacitance~potential
energy of compression!. We have analyzed the acoustic
circuit of Fig. 2~c! in Shaw’s paper, taking the limit that th
inductanceL f goes to infinity, which corresponds to a va
ishingly small f-hole. As one would expect, the fluctuati
pressures in the upper and lower bout are equal in this li

Standing waves in an acoustical waveguide arise fr
capacitance and inductance distributed equally along
waveguide. As the frequency of the mode is increased~by
increasing aperture area!, there is a tendency to form a stan
ing wave inside the violin. We shall call this tendency t
‘‘standing-wave’’ effect, and it causes the fluctuating pre
sure to increase slightly as one moves away from the a
ture. The distance from the middle of an f-hole to the top
the upper bout is about 18 cm, while a quarter wavelen
for the main air resonance (A0 at 285 Hz! is 30 cm. The
lower part of the violin is about 15 cm long, so that a smal
standing-wave effect would be expected in the lower bout
highly simplistic model of the pressure difference betwe
the upper and lower bouts is obtained by modeling t
standing waves with pressures that match at the f-holes.
ing the wavelengths and lengths listed above, one can ob
a crude estimate of the difference in pressure between
upper and lower bout by taking the pressure to be sinuso
and assuming antinodes (]p/]z50) at the top and bottom
This simple estimate yields a 20% difference between
pressure at the top of the upper bout and the bottom of
lower bout. In this article, we shall focus on the upper bo
because it should exhibit the stronger inhomogeneity in p
sure fluctuations. However, the methods discussed can
applied to the lower bout as well.

Aside from the ‘‘standing-wave’’ effect, one must con
sider two other effects. The ‘‘shape’’ effect is due to t
constriction near the center of the violin, apparently desig
to allow room for the bow. It produces a discontinuo
change in the slope of the pressure whenever the cr
sectional area changes abruptly, as shown schematical
Fig. 1. In the case of a violin, the ‘‘shape’’ effect enhanc
the ‘‘standing-wave’’ effect, although only slightly, as w
shall see later. The ‘‘source’’ effect arises from the Gree
function for an acoustical radiator inside a cavity.10,11 It also
causes a drop in pressure near the aperture, as sketch
Fig. 1. In contrast to the ‘‘shape’’ effect, which occurs on
when the chamber is long and thin, the ‘‘source’’ effect
present in every Helmholtz resonator, provided one is su
ciently close to the aperture.

Our analysis indicates that the ‘‘standing-wave’’ effe
is the dominant non-Helmholtz effect throughout the up
623 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997 G
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bout of the violin. However, both the ‘‘shape’’ and ‘‘source
effects should exert a small influence throughout most of
upper bout. And, we predict that the ‘‘source’’ effect wi
significantly reduce the fluctuating pressure at close prox
ity to the f-hole.

I. THEORY

The source effect arises from the fact that the apert
radiates with phase opposite to the uniform pressure fluc
tion associated with the Helmholtz resonance.10,11 We start
by integrating the Green’s function over the surface of
aperture, noting that the first and larger term yields a c
stant, independent of position, which we denote asP1 :

p~r !5E E H 1

k2V
2

1

4p

N

ur2r 8uJ s~r 8!d2r 8

'F12
Nk2V

4p K 1sL GP1 , ~1!

wheres52 jv(v–n) is proportional to the velocity fluctua
tion at the aperture, with the convention]/]t5 jv. We de-
note ^1/s& to be the weighted average of the inverse of t
distanceur2r 8u from the field pointr to source pointsr 8 on
the aperture.N is associated with image sources and depe
on the location of the aperture:

N52 if near center of a wall;
N54 if at a corner between two walls;
N58 if at a corner between three walls.

The source effect appears to be unrelated to the B
noulli principle (2dP52rdv2), which is nonlinear and
therefore negligible at low amplitude. A physical apprec
tion of the source effect is obtained by considering a dou
Helmholtz resonator, formed by joining two identical res
nators at the aperture. Since the two pressures in each c
ber are out of phase, the aperture is an antinode in velo
and a node in pressure. In the case of a single resonator
shall see that the fluctuating pressure at the aperture is
duced, but typically not to zero.

FIG. 1. The fluctuating pressure inside a rectangular cavity with irregu
cross section depends on whether the shape is~a! ‘‘straight,’’ ~b! ‘‘violin-
like,’’ or ~c! opposite that of the violin, i.e., ‘‘antiviolin.’’ The ‘‘shape
effect’’ is shown for a discontinuity in the cross-sectional area of the cha
ber. The ‘‘source’’ effect is a sudden drop in pressure near the apertur
623. Vandergrift and E. Wall: Pressure inside violin at resonance
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For distances much greater than the size of the aper
one may takê1/s& to be the inverse distance to the center
the aperture. However, since the source effect is strong
near the aperture, it is best to find^1/s& by integrating over
the surface of the aperture. For thin walls and a small circu
aperture, this integration is equivalent to calculating the
tential of a charged disk.1,5 Define x and y so that the dis-
tance to the center of the aperture of radiusR is s5(x2

1y2)1/2, as shown in Fig. 2. From Ref. 16, one can dedu

K 1sL 5
1

R
arctanSRy D if x50,

K 1sL 5
1

R
arcsinSRx D if y50 and x>R, ~2!

K 1sL 5
1

RH p

2 J if y50 and x<R.

The casey50 corresponds to a determination of press
along a line in contact with the wall and entering the apert
at x<R. Using Eq.~1! andk5(2R/V)1/2 for a small circular
aperture, one obtainŝNk2V/4ps&51/2 on the surface of the
aperture. Thus the fluctuating pressure at the aperture is
that within the chamber, if the aperture is not at a corner
the Appendix, this is shown to be a general result for
‘‘ideal’’ Helmholtz resonator~i.e., a resonator in which the
‘‘shape’’ and ‘‘standing-wave’’ effects are absent!.

Next, we consider the shape effect, which in contras
the source effect, is well known in that it is related to t
joining of two acoustical waveguides of different areas2,3

Here, we show that the shape effect can also be obta
using Webster’s horn equation2,3,17,18 for a waveguide of
nonuniform cross-sectional areaA5A(z):

k2p1
1

A

]

]zSA ]p

]zD50, ~3!

wherep(z) is the fluctuating pressure. The boundary con
tions are that]p/]z vanishes at the end opposite the apertu
and that bothp andA]p/]z be continuous, the latter bein
proportional to the air flux (r ]v/]t52]p/]z). The bound-
ary conditions are sufficient, providedv is known. Letz be
the distance to the end opposite the aperture, and letz5a be
the point where the area changes by a factor 1/b. ~For ex-
ample,A51 for z,a andA51/b for z/a.) For z,a, we
have

p~z!5P cos~kz!cos~vt !, ~4!

and, forz.a,

p~z!5P@C1 cos~kz!1C2 sin~kz!#cos~vt !. ~5!

FIG. 2. The geometry used to deduce the pressure near a circular apert
radiusR.
624 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997 G
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Using the continuity ofp(z) andA]p/]z at z5a yields

C15cos2~ka!1b sin2~ka!,
~6!

C25~12b!cos~ka!sin~ka!.

A conventional analysis of the ‘‘shape’’ effect, obtained b
joining acoustical waveguides of different area, yields t
same result.2,3

Since the ‘‘shape’’ and ‘‘source’’ effects tend to be lo
cated at different locations, we shall combine them in anad
hoc fashion by multiplying Eqs.~4! and ~5! by the factor in
front of P1 in Eq. ~1!.

II. EXPERIMENT

In order to eliminate complications caused by the exo
shape and plate flexibility associated with a real violin,
designed an experimental resonator that was not a simula
of a violin, but rather an effort to establish the correctness
our theory. Since the shape effect is small for an actual v
lin, we designed our resonant cavity in order to exagger
this effect. The rectangular cavity shape allowed us to int
duce large discontinuities in cross section by inserting blo
into the chamber.

The air resonance was driven by a small speaker pla
approximately 1 cm from the aperture, as was previou
done in an investigation of the main air resonance o
violin.4 The resonant cavity was a plywood box of dime
sions 2235310 cm, with seven plugged holes located alo
the center of one wall, as shown in Fig. 3. The fluctuati
pressure was measured at each plugged hole by replacin
plug by a small microphone19 that fit into the hole flush with
the inner wall of the box. A semicircular aperture of radi
1.5 cm was cut from an aluminum plate that formed the fro
face of the box. The aluminum plate was clamped to the b
and ‘‘plastic wood’’ was used at the holes so that the mic
phone and plugs would fit snugly. Two wooden blocks
length 11.4 cm were inserted into the chamber to reduce
cross-sectional area of the chamber by a factor of 0.424
this manner, all three cavity shapes shown in Fig. 1 could
studied. The resonant frequencies for the ‘‘straight,’’ ‘‘vio
lin,’’ and ‘‘anti-violin’’ shapes are 173, 172, and 210 Hz
respectively.

Since this aperture is at a corner between two wa
three image sources will also contribute to the Green’s fu
tion, so thatN54 in Eq. ~1!. On the other hand, we ca
model the semicircular aperture as a full circle by pretend

e or

FIG. 3. A sketch of the resonant cavity. The shaded area is the aperture
the line of black holes are plugged access holes for the microphone.
624. Vandergrift and E. Wall: Pressure inside violin at resonance
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the cavity had twice the volumeV, with the aperture being
located at the center of a wall (N52). SinceN andV enter
as a product in Eq.~1!, we see that both treatments yie
identical values for magnitude of the source effect. The
verse distancê1/s& is the same for both geometries, pr
vided we always average over the source and all its ima

Figure 4 displays the experimentally measured press
as well as theoretical curves showing the relative importa
of the ‘‘shape’’ and ‘‘source’’ effects. The seven experime
tal data points exhibit both an apparent change in slope
pressure~shape effect! and a significant drop in pressure ne
the aperture~source effect!. The solid line shows our theo
retical prediction for each of the three shapes. In orde
deduce the relative importance of the three effects, we h
used dashed lines to plot versions of the theory that do
include certain effects. The dashed line for the straight sh
is a simple model which takes the pressure variation to
cos(kz), thus incorporating only the ‘‘standing-wave’’ effec
The full model, incorporating all the effects, appears to g
the best fit to the experimental data for all three shapes.

The curves in Fig. 4 do not show the pressure falling
the value (1/2)P, as discussed in the Appendix and follow
ing Eq.~2!. This occurs because our resonator is not an id
Helmholtz resonator, which is characterized by incompre
ible airflow confined to the region very close to a small a
erture.

III. APPLICATION TO A VIOLIN

We shall now apply these ideas to the upper bout of
actual violin. For our calculation, we divide the chamber in
four parts and consider one-fourth of a violin with half a
f-hole. Picture the violin with the f-holes facing you and th
fingerboard at the top. Bisect the violin with a vertical lin
along the corpus centerline. Then cut the violin into tw
pieces, top and bottom, near the center of the f-holes, so
we are left with a single cavity with an aperture that cons
of half of one f-hole, located at the corner between t
walls. The following parameters are used:L518 cm,b51.2,
andV5600 cm3 ~one-fourth the actual volume!. The discon-
tinuity in area is taken to be 11 cm from the top of the upp
bout.

A crude model of the f-hole is obtained by treatin
one f-hole as two closely spaced circles or radius 0.8
centered 3.2 cm apart, with one hole being within o
subdivided chamber, centered atzA516.4 cm. An esti-
mate of frequency, using a circular aperture, yields 2p f
'c(2R/V)1/25282 Hz.1–3 A compromise must be made be
tween matching to the area of a typical f-hole~4–6 cm2) or
to theA0 frequency~275–295 Hz!. Fortunately, the calcu
lated pressure is not strongly sensitive to variations in th
parameters. This insensitivity also suggests that we are
tified in using a simple estimate of resonant frequency t
neglects both shape effects and aperture images.

The solid line of Fig. 5~labeled ‘‘along to plate’’! shows
the prediction for points located on the top plate for a p
starting from the uppermost region of the upper bout lead
to contact with an aperture. Since the airflow resembles
electric field on a charged conducting disk, the fluctuat
pressure should be uniform at the aperture, as shown in
625 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997 G
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figure. In order to make a graph with this uniform pressu
we have suppressed the variation associated with shap
fects at the f-hole. In other words, for values ofz located
beyond the f-hole atzA , Eq. ~1! is multiplied by an appro-
priate constant instead of by Eq.~5!. This difficulty in ob-

FIG. 4. Experimental data for the three configurations:~a! straight,~b! vio-
lin, ~c! antiviolin. Squares show experimentally observed data. The s
lines are theoretical predictions which include all effects. The dashed l
show theoretical predictions when only the source or only the shape ef
are included. The dashed line for the straight shape is a simple model w
takes the pressure variation to be cos(kz).
625. Vandergrift and E. Wall: Pressure inside violin at resonance
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taining a uniform pressure at the surface of the aperture
gests that thead hocmethod of multiplying both effects ma
not be valid when both ‘‘source’’ and ‘‘standing-wave’’ e
fects are large.

The three dashed lines in Fig. 5 show calculated pr
sure at points 2 cm below the top plate, taking^1/s&21 to be
„(z2zA)

2122…1/2. In order to establish the relative impo
tance of the various effects, predictions of the full theory,
well as simplified versions are shown. The line mark
‘‘along center’’ represents our best estimate, incorporat
the full theory including both shape and source effects. T
curve labeled ‘‘simple theory’’neglects both the shape a
source effects by assuming a pressure proportiona
cos(kz). This ‘‘simple’’ theory models only the ‘‘standing
wave’’ effect, and is adequate for most of the upper bout,
fails somewhat near the f-holes. The curve marked ‘‘sh
effect only’’ includes the shape effect, but neglects t
source effect. This curve is almost identical to the ‘‘simp
theory,’’ which suggests that the shape effect is relativ
unimportant in modeling the pressure variation in a violin

In conclusion, the fluctuating pressure inside a Hel
holtz resonator is nonuniform for two reasons: First, the
erture acts as an acoustical source, causing the pressu
drop in the immediate vicinity of the aperture. Second, if t
resonator is long and thin, there is a tendency to form
standing wave in the cavity, with the high pressure be
located in the back of the chamber. This effect is enhance
the chamber has a discontinuity in the cross-sectional are
the form found in the violin’s upper bout. Both theoretic
and experimental evidence indicates that the fluctuating p
sure inside a violin is considerably lower near the f-ho
than would be predicted by simply modeling the main
resonance as a classical Helmholtz resonator.

FIG. 5. A theoretical curve showing the pressure inside a violin. The s
line ~along top plate! shows the prediction for points located on the top pla
on a path starting from the uppermost region of the upper bout leadin
contact with an f-hole, with the shape effect being suppressed only a
aperture. The three dashed lines calculate the pressure along a path lo
2 cm below the top plate. The curve ‘‘along center’’ incorporates the
theory, incorporating both shape and source effects. ‘‘Simple theory’’
glects both shape and source effects by assumingpc cos(kz). ‘‘Shape effect
only’’ includes the shape effect, but neglects the source effect.
626 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997 G
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APPENDIX: DERIVATION OF ^Nk2V/4ps &51/2
AT THE APERTURE FOR AN IDEAL HELMHOLTZ
RESONATOR WITH N52

Here, we show that for an ideal Helmholtz resonator,
fluctuating pressure at the aperture is exactly one-half of
fluctuating pressure throughout the rest of the chamber,
vided that the aperture is not at a corner. In keeping with t
assumption of an ideal Helmholtz resonator, we take
fluctuating pressure to have the uniform valueP1 throughout
most of the chamber. Thus we assume a very small aper
and, consequently, a low value ofk5v/c, so that the
‘‘shape’’ and ‘‘standing-wave’’ effects are absent.

The simplest proof is based on the null in fluctuati
pressure at the aperture for the double Helmholtz reson
described in Sec. I. One notes that, if an identical resonato
placed on the other side of the aperture, then symmetry
tates a pressure node at the aperture. Hence the fa
^Nk2V/4ps& in Eq. ~1! must be unity for a double resonato
Next, we observe that the factor^1/s& in Eq. ~1! is indepen-
dent of whether the resonator is single or double. Howev
k5v/c decreases by a factor of 21/2 for a single resonator
because the ‘‘mass’’ of the air remains the same when
‘‘spring constant’’4 is halved in the process of converting
double resonator into a single one. Hence,^Nk2V/4ps& is
half as big for a single Helmholtz resonator as it is for
double resonator. Therefore,^Nk2/4psV&51/2 on the sur-
face of a single Helmholtz resonator.

A more detailed proof is based on an analog between
velocity and electrostatic field at lowv.1 The maximum ki-
netic energyT and the potential energyU of a Helmholtz
resonator are

T5
r0
2 E v2 dt, U5

c2r0
2V F E v•da

v G2,
wherer0 is the mass density of air.@This formula for poten-
tial energy can be obtained from Eq.~2! of Ref. 4, with the
substitution of*v–da for vj(pR2), wherej is the displace-
ment of the cylinder of air andK is the spring constant. Note
thatU5(1/2)Kj2 andc25gP0 /r0 .] SettingT5U yields

k2V5
@*v•da#2

*v2dt
,

from which the resonant frequency of an ideal Helmho
resonator can be deduced. Since the manipulations to fo
are quite familiar in electrostatics, we use a notation t
follows from viewingv52¹F* as an electric field, where
F* is the analog to electrostatic potential at the apertu
Other analogs areE* , Q* , and r* , representing energy
charge, charge density, and potential, respectively. From
good textbook on electrostatics,16 we have~in cgs units!:

d

to
he
ated
l
-
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1

8pE v2 dt5
1

2
~Q* !~F* !,

E v•da52pQ* ,

F* ~rA!5E r*

ur2r 8u
dt8[Q* K 1sL ,

providedr is somewhere on the surface of the aperture.~In
contrast to electrostatic calculations, the surface integra
velocity here is taken over only one surface.! Algebraic ma-
nipulation of these equations gives our results:

k2V

2p K 1sL 5
1

2
.

Lest there by any doubt, a third proof is offered. T
fluctuating pressure far outside the resonator is zero bec
the radiation field is small, owing to the low frequency a
small aperture size. The line integral ofv from far outside the
resonator to deep inside is proportional toP1 because
jvr*v–dr5P1 ~recall that r ]v/]t5 jvv52¹p). If the
aperture is not near a corner, the air flow pattern is ident
inside and outside the resonator. Therefore, by symmetry
line integral representing pressure starts at 0 far outside
resonator, reachesP1/2 at the aperture, and finally asymp
totes toP1 deep within the ideal Helmholtz resonator.
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