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The fluctuating pressure inside a violin is investigated atABe(main aip resonance, under the
assumption that the walls are kept rigid. Three effects are shown to contribute to a reduction in the
fluctuating pressure near the violin’s f-holes. The strongest effect arises from a tendency to form a
standing wave within the relatively long, thin shape of the upper bout. A second and smaller effect
arises from the violin’s nonuniform shape, and is modeled by treating the upper bout as an
acoustical waveguide with nonuniform cross section. A third effect is associated with the Green’s
function of an acoustical radiator, and will significantly reduce the fluctuating pressure in the
immediate vicinity of the violin’s f-hole. Experimental verification of the theory is obtained by
measuring the fluctuating pressure inside a rectangular box, with the resonance being driven by a
small loudspeaker located outside the aperture. 1997 Acoustical Society of America.
[S0001-49667)06107-9

PACS numbers: 43.75.0&VJS

INTRODUCTION volume of the violin, and_; is the sum of the lengths of the
two f-hole$].
The violin’'s main air resonanceAQ mode strongly re- Measurements of the violin’s bridge admittance,

sembles a Helmholtz resonator, which is characterized by p (w)/F(w)|, exhibit several dips and peaks as the fre-
small aperture and uniform fluctuating pressure throughouguencyw is varied>'*!> Cramer’s simple two-mass model
the chambet> However, the upper bout of the violin is suggests an explanation for this as it predicts a bridge admit-
sufficiently long and thin, and the f-hole sufficiently large, tance which diverges ab=wo and vanishes atv=wy .

that the AO mode also somewhat resembles the quartetNote thatwg is the resonant frequency of the air mode after
wavelength mode of an open-ended resonatsr’ Other it has been shifted away from the “Helmholtz” frequency

complications are: wy by wood-coupling effects. For the sake of simplicity, the
o . " two-mass model justifiably neglects any frequency shifts due

(1) the violin's nonuniform shapé; to complications in air motion described later in this paper.
(2) the aperture acting as an acoustical radiatdr; Cremer refers to the region on the upper plate between

(3) the flexibility of the walls (i.e., coupling to wood the f-holes as the “island,” and argues that it plays an im-

modes. portant role in the coupling of air and wood motion. This

This paper investigates the inhomogeneity in fluctuatin%Oupling depends on the mass and stifiness of the wood, as
ell as on the fluctuating air pressure, especially at locations

pressure inside the violin at th&0 mode, under the simpli- of maximum blate motion. Holoaranhic studies of the vio
fying assumption that the walls are rigid. However, the con- plate - rolograp €

- . lin's motion at theT1 mode indicate that motion is indeed
clusions are relevant to the fact that the plates of a violin dq
flex. Cremet describes a linear model that treats the violin asarge near the f-holes, although not so large that the refa-
o,y ' iaid plates held b . hani Th “tively small “island” completely dominates the production
0 or more ngid piates heid by spring mechanisms. The allye o4 \h o 1y a demonstration not recommended on a good
near an f-hole is treated simply as another mass with al

Uiolin, one can see the wood flex and hear a change in tone

associated spring constant caused by the compressibility %fy pressing hard on the instrument near the f-hole. While this
air The equations in this model resemble those of a discretghamge in tone may be due to changes in harmonics higher
set of masses linked by harmonic springs. In its simplesfhan the frequencies of interest, it suggests that the magni-
version, only two masses are considered: one wall thajde of fluctuating air pressure at the f-holes might be im-
moves as a piston, and one mass of air localized to a regiogortant. While not all investigations of pressure inside the
near the f-hole. This yields two modes: the akQ) mode, yjolin at the AO resonance have reported a reduction of pres-
and a “wood” mode, taken to represent tid mode}**®>  gure near the f-holes, our analysis clearly predicts that such a
higher in frequency by a factor of approximately 1.5. Cou-reduction should exi$t®

pling between air and wood motion is showto lower the A completely uniform fluctuating pressure is associated
frequency of the air mode, to a value perhaps 5%—7% with an ideal Helmholtz resonator and occurs if the f-hole is
lower than the classical Helmholtz frequeney, [i.e., wy sufficiently small. This can be understood as follows: If the
~c(L{/V7)*2 wherec is the speed of soun¥; is the total ~ size of the cavityL, is kept constant, then a reduction in
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aperture size reduces the resonance frequerey/c to the discontinuity

pint wherekL<1, so that a sound wave would transit the I P:P(Z) :

cavity in a time much less than a period of oscillation. Thus | a) Straight shape : ¢) “anti-violin”
the air comes to a sort of mechanical equilibrium with re- | \’g a) straight
spect to sound vibrations at very low frequencies. Shaas © ' b) “violin”
modeled theAO mode using acoustical impedances and con- Shape effect

cluded from both calculations and measurements that the ’ 5 7
pressure in the upper bout is 30%—-40% higher than in the| ) “Violin” shape

lower bout. This is due to inductancésnetic energy of air _ P(z) aperture
not associated with the f-holes. In a classical Helmholtz reso- :
nator, all the acoustical inductance is at the aperture, while \

the cavity provides all the acoustical capacitafgetential e :
energy of compressionWe have analyzed the acoustical |~ "% violin Source effect

circuit of Fig. 2Ac¢) in Shaw’s paper, taking the limit that the
inductancel s goes to infinity, which corresponds to a van-
ishingly small f-hole. As one would expect, the fluctuating FIG. 1. The fluctuating pressure inside a rectangular cavity with irregular
pressures in the upper and lower bout are equal in this limitross section depends on whether the shajie) istraight,” (b) “violin-
Standing waves in an acoustical Waveguide arise fro ike,” or (c) opposite that of the violin, i.e., “antiviolin.” The ‘“shape

. ; R ffect” is shown for a discontinuity in the cross-sectional area of the cham-
capacitance and inductance distributed equally along thger, The “source” effect is a sudden drop in pressure near the aperture.

waveguide. As the frequency of the mode is increadsd
increasing aperture argdhere is a tendency to form a stand- bout of the violin. However. both the “

|ng wave inside”the violin. We shall call this tendgncy the effects should exert a small influence throughout most of the
standing-wave” effect, and it causes the fluctuating pres-UIOIOer bout. And, we predict that the “source” effect will

sure to increase slightly as one moves away from the apekjgnificantly reduce the fluctuating pressure at close proxim-
ture. The distance from the middle of an f-hole to the top Ofity to the f-hole.

the upper bout is about 18 cm, while a quarter wavelength

for the main air resonanceAQ at 285 Hz is 30 cm. The

lower part of the violin is about 15 cm long, so that a smaller!- THEORY

standing-wave effect would be expected in the lower bout. A The source effect arises from the fact that the aperture
highly simplistic model of the pressure difference betweeryadiates with phase opposite to the uniform pressure fluctua-
the upper and lower bouts is obtained by modeling twotion associated with the Helmholtz resonaht& We start
standing waves with pressures that match at the f-holes. Ugyy integrating the Green’s function over the surface of the
ing the wavelengths and lengths listed above, one can obtagperture, noting that the first and larger term yields a con-

a crude estimate of the difference in pressure between th&ant, independent of position, which we denotePas
upper and lower bout by taking the pressure to be sinusoidal

7
z

shape” and “source”

and assuming antinodes/dz=0) at the top and bottom. p(r)=f f [i_i N ]a(r’)dzr'

This simple estimate yields a 20% difference between the KV 4w [r—r’|

pressure at the top of the upper bout and the bottom of the NK2V /1

lower bout. In this article, we shall focus on the upper bout w[l— <—> Py, )
because it should exhibit the stronger inhomogeneity in pres- 4m \s

sure fluctuations. However, the methods discussed can hghereo=—jw(v-n) is proportional to the velocity fluctua-
applied to the lower bout as well. tion at the aperture, with the conventiohit=jw. We de-

Aside from the “standing-wave” effect, one must con- note(1/s) to be the weighted average of the inverse of the
sider two other effects. The “shape” effect is due to thedistancer—r’| from the field pointr to source points’ on
constriction near the center of the violin, apparently designedhe apertureN is associated with image sources and depends
to allow room for the bow. It produces a discontinuouson the location of the aperture:

change in the slope of the pressure whenever the cross- N=2 if near center of a wall;
sectional area changes abruptly, as shown schematically in N=4 if at a corner between two walls;
Fig. 1. In the case of a violin, the “shape” effect enhances N=8 if at a corner between three walls.

the “standing-wave” effect, although only slightly, as we The source effect appears to be unrelated to the Ber-
shall see later. The “source” effect arises from the Green’snoulli principle (26P=—p&v?), which is nonlinear and
function for an acoustical radiator inside a cavity!It also  therefore negligible at low amplitude. A physical apprecia-
causes a drop in pressure near the aperture, as sketchedtion of the source effect is obtained by considering a double
Fig. 1. In contrast to the “shape” effect, which occurs only Helmholtz resonator, formed by joining two identical reso-
when the chamber is long and thin, the “source” effect isnators at the aperture. Since the two pressures in each cham-
present in every Helmholtz resonator, provided one is suffiber are out of phase, the aperture is an antinode in velocity
ciently close to the aperture. and a node in pressure. In the case of a single resonator, we

Our analysis indicates that the “standing-wave” effect shall see that the fluctuating pressure at the aperture is re-
is the dominant non-Helmholtz effect throughout the upperuced, but typically not to zero.
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22 cm .

W
FIG. 2. The geometry used to deduce the pressure near a circular aperture or 5c¢cm I
radiusR.

G. 3. A sketch of the resonant cavity. The shaded area is the aperture, and

. . I
For distances much greater than the size of the apertur e line of black holes are plugged access holes for the microphone.

one may také1/s) to be the inverse distance to the center of
the aperture. However, since the source effect is strong onl
near the aperture, it is best to fifd/s) by integrating over
the surface of the aperture. For thin walls and a small circular  C,=cog(ka)+ 3 sir?(ka),

aperture, this integration is equivalent to calculating the po- _ (6)
tential of a charged disk® Definex andy so that the dis- C,=(1-pB)cogka)sinka).

tance to the center of the aperture of radRsis s=(x> A conventional analysis of the “shape” effect, obtained by
+y?)2, as shown in Fig. 2. From Ref. 16, one can deducejoining acoustical waveguides of different area, yields the
same result:?

Xlsing the continuity ofp(z) andAdp/dz at z=a yields

1\ 1 R
<§> R arctaré— if x=0, Since the “shape” and “source” effects tend to be lo-

y cated at different locations, we shall combine them iraein

1\ 1 [R) hoc fashion by multiplying Eqs(4) and(5) by the factor in

S/ gacsin | ify=0 andx=R, (2 front of P, in Eq. (2).

! ol if 0 d R Il. EXPERIMENT

—_ )= —{ — = = .

s/~Rl2( Y and x<R.

The casey=0 corresponds to a determination of pressure In order to eliminate complications caused by the exotic

o . . shape and plate flexibility associated with a real violin, w
along aline in contact with the wall and entering the aperturedesi ned an experimental resonator that was not a simulation
atx<R. Using Eq.(1) andk= (2R/V)*? for a small circular 9 P

aperture, one obtair(® kZV/4ws>= 1/2 on the surface of the of a violin, but rather an effort to establish the correctness of
' qur theory. Since the shape effect is small for an actual vio-

aperture. Thus the fluctuating pressure at the aperture is hahn we designed our resonant cavity in order to exaggerate

:E:t thhg:]é?f iﬂ;ﬂgesrhgvmetzpsguge ':nr;?gf t:sﬁ?tr?;r';rr]}his effect. The rectangular cavity shape allowed us to intro-
E)p ' . 9 . . duce large discontinuities in cross section by inserting blocks
ideal” Helmholtz resonator(i.e., a resonator in which the

“ " " : " into the chamber.
shape” and “standing-wave” effects are absgnt : .
: o The air resonance was driven by a small speaker placed
Next, we consider the shape effect, which in contrast toa roximately 1 cm from the aperture. as was previous|
the source effect, is well known in that it is related to the PP y P ' P y

joining of two acoustical waveguides of different aréds. done in an investigation of the main air resonance of a

. . 4 . . _
Here, we show that the shape effect can also be obtaine\sldlglr']rs]'z;gexrleos er;an\}vifr? \;';%g\éaslf plggvﬁglisb% )::aotfe(cjjlg(e))rq
using Webster's horn equatibh'’'8 for a waveguide of : piugg 9

. . i the center of one wall, as shown in Fig. 3. The fluctuating
nonuniform cross-sectional aréde= A(z): .
pressure was measured at each plugged hole by replacing the
19 (A ap) plug by a small microphort@that fit into the hole flush with

2
+__
k"p A 9z 0z

=0, 3 the inner wall of the box. A semicircular aperture of radius

. . . 1.5 cm was cut from an aluminum plate that formed the front
v_vherep(z) Is the fluctl_Jatmg pressure. The b_Oundary condi-¢a e of the box. The aluminum plate was clamped to the box,
tions are thabp/dz vanishes at the end opposite the aperture, - 4 “plastic wood” was used at the holes so that the micro-

and tha}t bothp andA_ap/&z be continuous, the latter being phone and plugs would fit snugly. Two wooden blocks of
proportional to the air fluxg Jv/dt=—dp/dz). The bound- 1onq 11 4 cm were inserted into the chamber to reduce the
ary cpndltlons are sufficient, PrOV'de@' is known. Letz be cross-sectional area of the chamber by a factor of 0.424. In
the dls_tance to the end opposite the aperture, areHetbe this manner, all three cavity shapes shown in Fig. 1 could be
the point where the area changes by a fact@t {For ex- studied. The resonant frequencies for the “straight,” “vio-
ample,A=1 for z<a andA=1/5 for z/a.) Forz<a, we }in » anq “anti-violin” shapes are 173, 172, and 210 Hz,
have respectively.

p(z)=P cogkz)coq wt), 4 Since this aperture is at a corner between two walls,
three image sources will also contribute to the Green'’s func-
tion, so thatN=4 in Eq. (1). On the other hand, we can
p(z)=P[C; cogkz)+C, sin(kz)]coq wt). (5) model the semicircular aperture as a full circle by pretending

and, forz>a,

624  J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997 G. Vandergrift and E. Wall: Pressure inside violin at resonance 624



the cavity had twice the volum¥, with the aperture being 1

located at the center of a walN&2). SinceN andV enter S -
as a product in Eq(1), we see that both treatments vyield 0.9 \\.\
identical values for magnitude of the source effect. The in- \\.\

verse distanc€1/s) is the same for both geometries, pro-
vided we always average over the source and all its images.
Figure 4 displays the experimentally measured pressure
as well as theoretical curves showing the relative importance
of the “shape” and “source” effects. The seven experimen-
tal data points exhibit both an apparent change in slope of
pressurdshape effegtand a significant drop in pressure near

o
[ee]
/
/
/

normalized pressure
=)
~
oA
/
Vi

o

o
i
Lo

= data: straight shape

— — theory: no source \

the aperturesource effedt The solid line shows our theo- 0:5 77— theory: with source
retical prediction for each of the three shapes. In order to 0.4 | ‘ f
deduce the relative importance of the three effects, we have 0 5 10 15 20
used dashed lines to plot versions of the theory that do not () position (cm)
include certain effects. The dashed line for the straight shape
is a simple model which takes the pressure variation to be 1 R
cosk?), thus incorporating only the “standing-wave” effect. \\ """
The full model, incorporating all the effects, appears to give 0.9 \\ >
the best fit to the experimental data for all three shapes. © \\ 1
The curves in Fig. 4 do not show the pressure falling to §0 8 \\
the value (1/2p, as discussed in the Appendix and follow- 4 \\\ \
ing Eq.(2). This occurs because our resonator is not an ideal 20.7 \\
Helmholtz resonator, which is characterized by incompress- 2 \‘\‘
ible airflow confined to the region very close to a small ap- %0.6 1| = data: "violin" shape 2
erture. < — — theory: shape only
0.5 H ----theory: source only
I1l. APPLICATION TO A VIOLIN ——theory: both effects '\
We shall now apply these ideas to the upper bout of an 0.4 | | |
actual violin. For our calculation, we divide the chamber into 0 3 10 15 20
four parts and consider one-fourth of a violin with half an ) position (cm)
f-hole. Picture the violin with the f-holes facing you and the 1
fingerboard at the top. Bisect the violin with a vertical line I~ G O
along the corpus centerline. Then cut the violin into two 0.9 \\\ i
pieces, top and bottom, near the center of the f-holes, so that %\
we are left with a single cavity with an aperture that consists 0.8 .~

of half of one f-hole, located at the corner between two
walls. The following parameters are uséd: 18 cm,8=1.2,
andV=600 cn? (one-fourth the actual volumeThe discon-
tinuity in area is taken to be 11 cm from the top of the upper

normalized pressure
[<)
~
"z
Z

o
N

0.6 s data: "anti-violin"
bout. — — theory: shape only
A crude model of the f-hole is obtained by treating 1| ~----theory: source only
. ; 0.5 — theory: both effects
one f-hole as two closely spaced circles or radius 0.8 cm, :

centered 3.2 cm apart, with one hole being within our
subdivided chamber, centered at=16.4 cm. An esti-
mate of frequency, using a circular aperture, yieldsf2 ©
~c(2R/V)Y?=282 Hz1~3 A compromise must be made be-
tween matching to the area of a typical f-h¢te-6 cnf) or FIG. 4. Experimental data for the three configuratidia$:straight,(b) vio-
to the AO frequency(275—-295 Hz Fortunately, the calcu- lin, (c) antiviolin. Squares show experimentally observed data. The solid
lated pressure is not strongly sensitive to variations in thestnes are theoretical predictions which include all effects. The dashed lines

t This i itivity al ts that . show theoretical predictions when only the source or only the shape effects
pgrame er?' IS .msenSI IV_I Yy also suggesls that We are JUxzg jnciuded. The dashed line for the straight shape is a simple model which
tified in using a simple estimate of resonant frequency thagakes the pressure variation to be ¢as(
neglects both shape effects and aperture images.

The solid line of Fig. 5labeled “along to plate) shows

the prediction for points located on the top plate for a pathfigure. In order to make a graph with this uniform pressure,
starting from the uppermost region of the upper bout leadingve have suppressed the variation associated with shape ef-
to contact with an aperture. Since the airflow resembles théects at the f-hole. In other words, for values ofocated
electric field on a charged conducting disk, the fluctuatingbeyond the f-hole at,, Eq. (1) is multiplied by an appro-
pressure should be uniform at the aperture, as shown in thariate constant instead of by E¢p). This difficulty in ob-

o

5 10 15 20
position (cm)
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-%0 4. ——along top plate APPENDIX: DERIVATION OF (Nk2V/4Aws)=1/2
£ - ---along center U AT THE APERTURE FOR AN IDEAL HELMHOLTZ
2 _ --simple theory RESONATOR WITH N=2
0.2 +— —
— — shape effect only Here, we show that for an ideal Helmholtz resonator, the
o fluctuating pressure at the aperture is exactly one-half of the

fluctuating pressure throughout the rest of the chamber, pro-
vided that the aperture is not at a corner. In keeping with this
assumption of an ideal Helmholtz resonator, we take the
FIG. 5. A theoretical curve showing the pressure inside a violin. The solidfluctuating pressure to have the uniform vaRigthroughout

line (along top platgshows the prediction for points located on the top plate most of the chamber. Thus we assume a very small aperture,

on a path starting from the uppermost region of the upper bout leading t3nd consequently a low value d&f=w/c. so that the
contact with an f-hole, with the shape effect being suppressed only at the , ' '

aperture. The three dashed lines calculate the pressure along a path Iocate%hape a_nd standlng-v_vave effects are abse_nt' ]
2 cm below the top plate. The curve “along center” incorporates the full The simplest proof is based on the null in fluctuating

theory, incorporating both shape and source effects. “Simple theory” ne-pressure at the aperture for the double Helmholtz resonator

glects both shape and source effects by assupingosk?). “Shape effect  described in Sec. I. One notes that, if an identical resonator is

only” includes the shape effect, but neglects the source effect. . .
placed on the other side of the aperture, then symmetry dic-
tates a pressure node at the aperture. Hence the factor

Nk2V/47-rs) in Eq. (1) must be unity for a double resonator.

taining a uniform pressure at the surface of the aperture Suéﬂext we observe that the factot/s) in Eq. (1) is indepen-
gests that thead hocmethod of multiplying both effects may dent ,of whether the resonator is single or double. However,

not be valid when both “source” and “standing-wave” ef- | _ /¢ decreases by a factor of2 for a single resonator

fects are large. because the “mass” of the air remains the same when the
The three dashed lines in Fig. 5 show calculated pres«gpring constant™ is halved in the process of converting a

sure at points 2 cm below the top plate, takifigs) * to be  gouble resonator into a single one. Hentek2V/4ms) is

0 2 4 6 8 10 12 14 16 18
position (cm)

((z—2a)?+2%" In order to establish the relative impor- half as big for a single Helmholtz resonator as it is for a
tance of the various effects, predictions of the full theory, asdouble resonator. ThereforéN k2/47-rsv>=1/2 on the sur-
well as simplified versions are shown. The line markedface of a single Helmholtz resonator.

“along center” represents our best estimate, incorporating A more detailed proof is based on an analog between air
the full theory including both shape and source effects. Thevelocity and electrostatic field at low.! The maximum ki-
curve labeled “simple theory”neglects both the shape andhetic energyT and the potential energy of a Helmholtz
source effects by assuming a pressure proportional teesonator are

coskz. This “simple” theory models only the “standing- 5 5

wave” effect, and is adequate for most of the upper bout, but T= @f v2dr. U= €Po j v-_da

fails somewhat near the f-holes. The curve marked “shape 2 ' 2V o |’

effect only” includes the shape effect, but neglects the ) ] o

source effect. This curve is almost identical to the “simple","herePO Is the mass de_nS|ty of aifThis formula for .poten-
theory,” which suggests that the shape effect is relativelytlal energy can be obtained frozm EQ) of F\_’ef. 4 V.V'th the
unimportant in modeling the pressure variation in a violin. SUbSt'tl]f“ﬁn of{_v~da fc;r (f’g(TrR.)’ r\}/vherelg Is the displace-

In conclusion, the fluctuating pressure inside a HeIm-tmhe?EJo_tl‘/aZC}z'gderg ?'_f agK/ISt eSSFt)tr'mg'I?STJSta'ntlaNme
holtz resonator is nonuniform for two reasons: First, the ap- = = (1/2)K¢™ ande™=yPo/po.] SettingT=U yields
erture acts as an acoustical source, causing the pressure to [fv-da]?
drop in the immediate vicinity of the aperture. Second, if the — k?V= “fo%dr
resonator is long and thin, there is a tendency to form a vET
standing wave in the cavity, with the high pressure beingrom which the resonant frequency of an ideal Helmholtz
located in the back of the chamber. This effect is enhanced ifesonator can be deduced. Since the manipulations to follow
the chamber has a discontinuity in the cross-sectional area @fe quite familiar in electrostatics, we use a notation that
the form found in the violin’s upper bout. Both theoretical follows from viewingv=—V®* as an electric field, where
and experimental evidence indicates that the fluctuating presp* is the analog to electrostatic potential at the aperture.
sure inside a violin is considerably lower near the f-holesOther analogs ar€*, Q*, and p*, representing energy,
than would be predicted by simply modeling the main aircharge, charge density, and potential, respectively. From any
resonance as a classical Helmholtz resonator. good textbook on electrostatitSwe have(in cgs units:
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